日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在△ABC中,AB=AC,∠BAC=60°,點E為直線AC上一點,D為直線BC上的一點,且DA=DE. 當點D在線段BC上時,如圖①,易證:BD+AB=AE;
          當點D在線段CB的延長線上時,如圖②、圖③,猜想線段BD,AB和AE之間又有怎樣的數(shù)量關(guān)系?寫出你的猜想,并選擇一種情況給予證明.

          【答案】解;如圖②中,
          結(jié)論:BD+AE=AB.
          理由:作EM∥AB交BC于M,
          ∵△ABC是等邊三角形,
          ∴∠ABC=∠C=∠BAC=60°,AB=BC=AC,
          ∴∠CEM=∠CAB=60°,∠CME=∠CBA=60°,
          ∴△CME是等邊三角形,
          ∴CE=CM=EM,∠EMC=60°,
          ∴AE=BM,
          ∵DA=DE,
          ∴∠DAE=∠DEA,
          ∴∠BAC+∠DAB=∠C+∠EDM,
          ∴∠DAB=∠EDM,
          ∵∠ABD=180°﹣∠ABC=120°,∠EMD=180°﹣∠EMC=120°,
          ∴∠ABD=∠DME,
          在△ABD和△DEM中,

          ∴△ABD≌△DEM,
          ∴DB=EM=CM,
          ∴DB+AE=CM+BM=BC=AB.
          如圖③中,

          結(jié)論:BD﹣AE=AB.
          理由:作EM∥AB交BC于M,
          ∵△ABC是等邊三角形,
          ∴∠ABC=∠C=∠BAC=60°,AB=BC=AC,
          ∴∠CEM=∠CAB=60°,∠CME=∠CBA=60°,
          ∴△CME是等邊三角形,
          ∴CE=CM=EM,∠EMC=∠MEC=60°,
          ∴AE=BM,
          ∵DA=DE,
          ∴∠DAE=∠DEA,
          ∴∠C+∠ADC=∠MEC+∠EDDEM,
          ∴∠ADB=∠DEM,
          ∵∠ABD=180°﹣∠ABC=120°,∠EMD=180°﹣∠EMC=120°,
          ∴∠ABD=∠DME,
          在△ABD和△DEM中,
          ,
          ∴△ABD≌△DME,
          ∴DB=EM=CM,
          ∴DB﹣AE=CM﹣BM=BC=AB.
          【解析】圖②中,論:BD+AE=AB,作EM∥AB交BC于M,先證明△EMC是等邊三角形得CE=CM,AE=BM,再證明△ABD≌△DEM,得DB=EM=MC由此可以對稱結(jié)論.圖③中,結(jié)論:BD﹣AE=AB,證明方法類似.

          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,點B、C、D都在⊙O上,過C點作CA∥BD交OD的延長線于點A,連接BC,∠B=∠A=30°,BD=2
          (1)求證:AC是⊙O的切線;
          (2)求由線段AC、AD與弧CD所圍成的陰影部分的面積.(結(jié)果保留π)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知:如圖,Rt△ABC中,∠ABC=90°,AD平分∠BAC交BC于D.
          (1)用尺規(guī)畫圓O,使圓O過A、D兩點,且圓心O在邊AC上.(保留作圖痕跡,不寫作法)
          (2)求證:BC與圓O相切;
          (3)設(shè)圓O交AB于點E,若AE=2,CD=2BD.求線段BE的長和弧DE的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖在平面直角坐標系xOy中,△ABC的三個頂點坐標分別為A(﹣2,4),B(﹣2,1),C(﹣5,2).

          (1)畫出△ABC關(guān)于x軸對稱的△A1B1C1;
          (2)將△A1B1C1的三個頂點的橫坐標與縱坐同時乘以﹣2,得到對應(yīng)的點A2 , B2 , C2 , 請畫出△A2B2C2;
          (3)則SA1B1C1:SA2B2C2

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖在平面直角坐標系xOy中,△ABC的三個頂點坐標分別為A(﹣2,4),B(﹣2,1),C(﹣5,2).

          (1)畫出△ABC關(guān)于x軸對稱的△A1B1C1;
          (2)將△A1B1C1的三個頂點的橫坐標與縱坐同時乘以﹣2,得到對應(yīng)的點A2 , B2 , C2 , 請畫出△A2B2C2
          (3)則SA1B1C1:SA2B2C2

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】函數(shù)y=ax2+1與y= (a≠0)在同一平面直角坐標系中的圖象可能是(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖(1),拋物線y=﹣ x2+x+c與x軸交于A、B兩點,與y軸交于點C,其中點A的坐標為(﹣2,0).

          (1)求此拋物線的解析式;
          (2)①若點D是第一象限內(nèi)拋物線上的一個動點,過點D作DE⊥x軸于E,連接CD,以O(shè)E為直徑作⊙M,如圖(2),試求當CD與⊙M相切時D點的坐標;
          ②點F是x軸上的動點,在拋物線上是否存在一點G,使A、C、G、F四點為頂點的四邊形是平行四邊形?若存在,求出點G的坐標;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在正方形ABCD中,點E、F分別是BC、CD的中點,DE交AF于點M,點N為DE的中點.
          (1)若AB=4,求△DNF的周長及sin∠DAF的值;
          (2)求證:2ADNF=DEDM.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】計算: +|﹣4|+(﹣1)0﹣( 1

          查看答案和解析>>

          同步練習冊答案