日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,直線y=﹣2x+4與坐標(biāo)軸分別交于C、B兩點(diǎn),過點(diǎn)C作CD⊥x軸,點(diǎn)P是x軸下方直線CD上的一點(diǎn),且△OCP與△OBC相似,求過點(diǎn)P的雙曲線解析式.

          【答案】解:∵直線y=﹣2x+4與坐標(biāo)軸分別交于C、B兩點(diǎn),
          ∴令y=0,可得﹣2x+4=0,解得x=2,即C(2,0),OC=2,
          令x=0,可得y=4,即B(0,4),OB=4,
          ①如圖1,當(dāng)∠OBC=∠COP時(shí),△OCP∽△BOC,

          =,即=,解得CP=1,
          ∴P(2,﹣1),
          設(shè)過點(diǎn)P的雙曲線解析式y(tǒng)=,把P點(diǎn)代入解得k=﹣2,
          ∴過點(diǎn)P的雙曲線解析式y(tǒng)=﹣
          ②如圖2,當(dāng)∠OBC=∠CPO時(shí),△OCP∽△COB,

          在△OCP和△COB中,

          ∴△OCP≌△COB(AAS)
          ∴CP=BO=4,
          ∴P(2,﹣4)
          設(shè)過點(diǎn)P的雙曲線解析式y(tǒng)=,把P點(diǎn)代入得﹣4=,解得k=﹣8,
          ∴過點(diǎn)P的雙曲線解析式y(tǒng)=
          綜上可得,過點(diǎn)P的雙曲線的解析式為y=﹣或y=
          【解析】由直線y=﹣2x+4與坐標(biāo)軸分別交于C、B兩點(diǎn),易得OC=2,OB=4,再分兩種情況①當(dāng)∠OBC=∠COP時(shí),△OCP與△OBC相似,②當(dāng)∠OBC=∠CPO時(shí),△OCP與△OBC相似分別求出點(diǎn)的坐標(biāo),再求出過點(diǎn)P的雙曲線解析式.
          【考點(diǎn)精析】解答此題的關(guān)鍵在于理解相似三角形的判定與性質(zhì)的相關(guān)知識,掌握相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足
          (1)求△ABC的面積;
          (2)若tanB=2,求a的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】為迎接河南省第30屆青少年科技創(chuàng)新大賽,某中學(xué)向七年級學(xué)生征集科幻畫作品,李老師從七年級12個(gè)班中隨機(jī)抽取了A、B、C、D四個(gè)班,對征集到的作品的數(shù)量進(jìn)行了分析統(tǒng)計(jì),制作了兩幅不完整的統(tǒng)計(jì)圖(如圖)

          (1)李老師所調(diào)查的4個(gè)班征集到作品共件,其中B班征集到作品 , 請把圖補(bǔ)充完整;
          (2)李老師所調(diào)查的四個(gè)班平均每個(gè)班征集到作品多少件?請估計(jì)全年級共征集到作品多少件?
          (3)如果全年級參展作品中有5件獲得一等獎(jiǎng),其中有3名作者是男生,2名作者是女生.現(xiàn)在要抽兩人去參加學(xué)校總結(jié)表彰座談會,用樹狀圖或列表法求出恰好抽中一男一女的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平行四邊形ABCD中,若AB=6,AD=10,∠ABC的平分線交AD于點(diǎn)E,交CD的延長線于點(diǎn)F,求DF的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,M、N分別是正方形ABCD邊DC、AB的中點(diǎn),分別以AE、BF為折痕,使點(diǎn)D、點(diǎn)C落在MN的點(diǎn)G處,則△ABG是 三角形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】下列說法中正確的是( 。
          A.擲兩枚質(zhì)地均勻的硬幣,“兩枚硬幣都是正面朝上”這一事件發(fā)生的概率為
          B.“對角線相等且相互垂直平分的四邊形是正方形”這一事件是必然事件
          C.“同位角相等”這一事件是不可能事件
          D.“鈍角三角形三條高所在直線的交點(diǎn)在三角形外部”這一事件是隨機(jī)事件

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,AB是⊙O的直徑,點(diǎn)D是上一點(diǎn),且∠BDE=∠CBE,BD與AE交于點(diǎn)F.

          (1)求證:BC是⊙O的切線。
          (2)若BD平分∠ABE,求證:DE2=DFDB。
          (3)在(2)的條件下,延長ED,BA交于點(diǎn)P,若PA=AO,DE=2,求PD的長和⊙O的半徑。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在邊長為6的菱形ABCD中,∠DAB=60°,以點(diǎn)D為圓心,菱形的高DF為半徑畫弧,交AD于點(diǎn)E,交CD于點(diǎn)G,則圖中陰影部分的面積是( 。

          A.18 ﹣9π
          B.18﹣3π
          C.9
          D.18 ﹣3π

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,地面BD上兩根等長立柱AB,CD之間懸掛一根近似成拋物線y= x2 x+3的繩子.

          (1)求繩子最低點(diǎn)離地面的距離;
          (2)因?qū)嶋H需要,在離AB為3米的位置處用一根立柱MN撐起繩子(如圖2),使左邊拋物線F1的最低點(diǎn)距MN為1米,離地面1.8米,求MN的長;
          (3)將立柱MN的長度提升為3米,通過調(diào)整MN的位置,使拋物線F2對應(yīng)函數(shù)的二次項(xiàng)系數(shù)始終為 ,設(shè)MN離AB的距離為m,拋物線F2的頂點(diǎn)離地面距離為k,當(dāng)2≤k≤2.5時(shí),求m的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案