日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,直角梯形ABCD中,AD∥BC,AB⊥BC,E是AB上的點(diǎn),且DE=CE,DE⊥CE,
          (1)證明:AB=AD+BC.
          (2)若已知AB=a,求梯形ABCD的面積.

          解:(1)證明:∵DE⊥EC,
          ∴∠DEC=90°,
          ∴∠AED+∠BEC=90°,
          又AB⊥BC,
          ∴∠B=90°,
          ∴∠BCE+∠BEC=90°,
          ∴∠AED=∠BCE,
          又AD∥BC,
          ∴∠A+∠B=180°,
          ∴∠A=∠B=90°,
          在△AED和△CBE中,
          ,
          ∴△AED≌△CBE(AAS),
          ∴AD=EB,AE=BC,
          則AB=AE+EB=BC+AD;
          (2)由AB=a,及(1)得:AB=BC+AD=a,
          則S直角梯形ABCD=AB•(BC+AD)=a2
          分析:(1)由DE垂直于EC,得到一個(gè)角為直角,利用平角的定義得到一對(duì)角互余,又三角形BEC為直角三角形,根據(jù)直角三角形的兩銳角互余得到一對(duì)角互余,利用同角的余角相等得到一對(duì)角相等,再由一對(duì)直角相等及DE=CE,利用AAS可得出三角形AED與三角形BCE全等,根據(jù)全等三角形的對(duì)應(yīng)邊相等得到AD=EB,AE=BC,由AB=AE+EB,等量代換可得證;
          (2)由第一問的結(jié)論AB=AD+BC,根據(jù)AB=a,得出此直角梯形的上下底之和為a,高為a,利用梯形的面積公式即可求出梯形ABCD的面積.
          點(diǎn)評(píng):此題考查了直角梯形,全等三角形的判定與性質(zhì),以及梯形的面積公式,利用了轉(zhuǎn)化的思想,靈活運(yùn)用全等三角形的判定與性質(zhì)是解本題的關(guān)鍵,本題在做第二問時(shí)注意運(yùn)用第一問的結(jié)論.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,直角梯形ABCD中,AD∥BC,∠ABC=90°,點(diǎn)E是AB邊上一點(diǎn),AE=BC,DE⊥EC,取DC的中點(diǎn)F,連接AF、BF.
          (1)求證:AD=BE;
          (2)試判斷△ABF的形狀,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60度.以AD為邊在直角梯形精英家教網(wǎng)ABCD外作等邊三角形ADF,點(diǎn)E是直角梯形ABCD內(nèi)一點(diǎn),且∠EAD=∠EDA=15°,連接EB、EF.
          (1)求證:EB=EF;
          (2)延長FE交BC于點(diǎn)G,點(diǎn)G恰好是BC的中點(diǎn),若AB=6,求BC的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,直角梯形ABCD中,AD∥BC,∠BCD=90°,且CD=2AD,tan∠ABC=2.
          (1)求證:BC=CD;
          (2)在邊AB上找點(diǎn)E,連接CE,將△BCE繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)90°得到△DCF.連接EF,如果EF∥BC,試畫出符合條件的大致圖形,并求出AE:EB的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•深圳二模)如圖,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60°.以AD為邊在直角梯形ABCD外作等邊三角形ADF,點(diǎn)E是直角梯形ABCD內(nèi)一點(diǎn),且∠EAD=∠EDA=15°,連接EB、EF.
          (1)求證:EB=EF;
          (2)若EF=6,求梯形ABCD的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:如圖,直角梯形ABCD中,AD∥BC,∠ABC=90°,以AB為直徑的⊙O切DC邊于E點(diǎn),AD=3cm,BC=5cm.求⊙O的面積.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案