日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知:在平面直角坐標(biāo)系中A0,a)、Bb,0),且滿足4a22+b420,點Pm,m)在線段AB

          1)求AB的坐標(biāo);

          2)如圖1,若過PPCABx軸于C,交y軸交于點D,求的值;

          3)如圖2,以AB為斜邊在AB下方作等腰直角△ABCCGOBG,設(shè)I是∠OAB的角平分線與OP的交點,IHABH.請?zhí)骄?/span>的值是否發(fā)生改變,若不改變請求其值;若改變請說明理由.

          【答案】(1)A0,2),B4,0);(25;(3的值不變,為2

          【解析】

          1)根據(jù)非負(fù)數(shù)的性質(zhì)即可解決問題.

          2)先求出直線AB的解析式,利用方程組求出點P坐標(biāo),再求出直線PC的解析式,求出點C坐標(biāo)即可解決問題.

          3)如圖2中,作IEOAE,CMy軸于M,IFOBF.由△ACM≌△BCG,推出AMBGCMCG,推出BHAHOBOA2CG,即可解決問題.

          1)∵4a22+b420,

          又∵4a220,b420

          a2,b4

          A0,2),B4,0).

          2)如圖中,

          A02),B40),

          ∴直線AB的解析式為y=﹣x+2

          Pm,m),

          ∴點P在直線yx上,

          解得

          ∴點P,),

          PCAB,

          ∴直線PC的解析式為y2x

          ∴點C坐標(biāo)為(,0),

          OC,BC

          5

          3的值不變.理由如下:

          如圖2中,作IEOAECMy軸于M,IFOBF

          ∵設(shè)I是∠OAB的角平分線與OP的交點,OP平分∠AOB,

          I是內(nèi)心,

          IHAB,IEOA,IFOB

          IEIHIF,易知AHAE,BFBH

          BHAHBFAEOBOA,

          ∵∠MCG=∠ACB90°,

          ∴∠ACM=∠BCG,

          在△ACM和△BCG中,

          ,

          ∴△ACM≌△BCGAAS),

          AMBG,CMCG,

          ∵∠OMC=∠OGC=∠MOG90°,

          ∴四邊形OMCG是矩形,

          CMCG,

          ∴四邊形OMCG是正方形,

          OMOGCGCM

          BHAHOBAO=(BG+OG)﹣(AMOM)=2CG,

          2

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】出租車司機小李某天上午營運時是在東西走向的大街上進行的,如果規(guī)定向東為正,向西為負(fù),他這天上午所接六位乘客的行車?yán)锍蹋▎挝唬?/span>km)如下:-2 , +5 ,-1 ,+1 ,-6 ,- 2 ,問:

          (1)將最后一位乘客送到目的地時,小李在什么位置?

          (2)若汽車耗油量為0.2L/km(升/千米),這天上午小李接送乘客,出租車共耗油多少升?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知△ABC中,AB=AC=,BC=4.線段AB的垂直平分線DF分別交邊AB、AC、BC所在的直線于點D、E、F.

          (1)求線段BF的長;

          (2)求AE:EC的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,直線Lx軸、y軸分別交于AB兩點,在y軸上有一點C04,線段OA上的動點M(與O,A不重合)從A點以每秒1個單位的速度沿x軸向左移動。

          1)求A、B兩點的坐標(biāo);

          2)求△COM的面積SM的移動時間t之間的函數(shù)關(guān)系式,并寫出t的取值范圍;

          3)當(dāng)t何值時△COM≌△AOB,并求此時M點的坐標(biāo)。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】Rt△ ABC 中, AB=AC,點 D 為 BC 中點.∠ MDN=90°, ∠ MDN 繞點 D 旋轉(zhuǎn),DM、DN 分別與邊 AB、AC 交于 E、F 兩點.下列結(jié)論:① BE+CF=BC;② S△AEF S△ABC;③ S四邊形AEDF=ADEF;④ AD≥ EF;⑤ AD與EF可能互相平分,其中正確結(jié)論的個數(shù)是( )

          A. 1 B. 2 C. 3 D. 4

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】材料閱讀;

          小明偶然發(fā)現(xiàn)線段AB的端點A的坐標(biāo)為(12),端點B的坐標(biāo)為(34),則線段AB中點的坐標(biāo)為(23),通過進一步的探究發(fā)現(xiàn)在平面直角坐標(biāo)系中,以任意兩點Px1,y1)、Qx2,y2)為端點的線段中點坐標(biāo)為(,).

          知識運用:

          如圖,矩形ONEF的對角線相交于點M,ONOF分別在x軸和y軸上,O為坐標(biāo)原點,點E的坐標(biāo)為(4,3),則點M的坐標(biāo)為   

          能力拓展:

          在直角坐標(biāo)系中,有A(﹣1,2)、B3,4)、Cl,4)三點,另有一點D與點A、B、C構(gòu)成平行四邊形的頂點,求點D的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知a是最大的負(fù)整數(shù),bc滿足,且a,b,c分別是點A,B,C在數(shù)軸上對應(yīng)的數(shù).

          (1)a,b,c的值,并在數(shù)軸上標(biāo)出點AB,C;

          (2)若動點PC出發(fā)沿數(shù)軸正方向運動,點P的速度是每秒2個單位長度,運動幾秒后,點P到達(dá)B?

          (3)在數(shù)軸上找一點M,使點MA,B,C三點的距離之和等于13,請直接寫出所有點M對應(yīng)的數(shù).(不必說明理由)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)軸上有A. B.C三點,分別表示有理數(shù)2610,10,動點PA出發(fā),以每秒1個單位的速度向終點C移動,設(shè)點P移動時間為t秒。

          1PA= ,PC= (用含t的代數(shù)式表示)

          2)當(dāng)點P運動到B點時,點QA點出發(fā),以每秒3個單位的速度向C點運動,Q點到達(dá)C點后,再立即以同樣的速度返回,當(dāng)點P運動到點C時,P、Q兩點運動停止,

          ①當(dāng)PQ兩點運動停止時,求點P和點Q的距離;

          ②求當(dāng)t為何值時P、Q兩點恰好在途中相遇.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某地區(qū)教育部門為了解初中數(shù)學(xué)課堂中學(xué)生參與情況,并按“主動質(zhì)疑、獨立思考、專注聽講、講解題目”四個項目進行評價.檢測小組隨機抽查部分學(xué)校若干名學(xué)生,并將抽查學(xué)生的課堂參與情況繪制成如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖(均不完整).請根據(jù)統(tǒng)計圖中的信息解答下列問題:

          (1)本次抽查的樣本容量是 ;

          (2)在扇形統(tǒng)計圖中,“主動質(zhì)疑”對應(yīng)的圓心角為 度;

          (3)將條形統(tǒng)計圖補充完整;

          (4)如果該地區(qū)初中學(xué)生共有60000名,那么在課堂中能獨立思考的學(xué)生約有多少人?

          查看答案和解析>>

          同步練習(xí)冊答案