日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,直線AC與⊙O相切于點(diǎn)A,點(diǎn)B為⊙O上一點(diǎn),且OCOB于點(diǎn)O,連接ABOC于點(diǎn)D

          1)求證:ACCD;

          2)若AC3OB4,求OD的長(zhǎng)度.

          【答案】1)見(jiàn)解析;(22

          【解析】

          1)由AC是⊙O的切線,得OAAC,結(jié)合ODOB,OAOB,得∠CDA=∠DAC,進(jìn)而得到結(jié)論;

          2)利用勾股定理求出OC,即可解決問(wèn)題.

          1)∵AC是⊙O的切線,

          OAAC

          ∴∠OAC90°,即:∠OAD+DAC90°,

          ODOB,

          ∴∠DOB90°

          ∴∠BDO+B90°,

          OAOB,

          ∴∠OAD=∠B

          ∴∠BDO=∠DAC,

          ∵∠BDO=∠CDA

          ∴∠CDA=∠DAC,

          CDCA

          2)∵在RtACO中,OC5,

          CACD3

          ODOCCD2

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】綜合與實(shí)踐

          問(wèn)題情境

          在一節(jié)數(shù)學(xué)活動(dòng)課上,老師帶領(lǐng)同學(xué)們借助幾何畫(huà)板對(duì)以下題目進(jìn)行了研究.如圖1

          MN是過(guò)點(diǎn)A的直線,點(diǎn)C為直線MN外一點(diǎn),連接AC,作∠ACD=60°,使AC=DC,在MN上取一點(diǎn)B,使∠DBN=60°

          觀察發(fā)現(xiàn)

          1)根據(jù)圖1中的數(shù)據(jù),猜想線段AB、DB、CB之間滿足的數(shù)量關(guān)系是 ;

          2)希望小組認(rèn)真思考后提出一種證明方法:將CB所在的直線以點(diǎn)C為旋轉(zhuǎn)中心,逆時(shí)針旋轉(zhuǎn)60°,與直線MN交于點(diǎn)E,即可證明(1)中的結(jié)論. 請(qǐng)你在圖1中作出線段CE,并根據(jù)此方法寫(xiě)出證明過(guò)程;

          實(shí)踐探究

          3)奮進(jìn)小組在繼續(xù)探究的過(guò)程中,將點(diǎn)C繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),他們發(fā)現(xiàn)當(dāng)旋轉(zhuǎn)到圖2和圖3的位置時(shí),∠DBN=120°,線段ABBD、CB的大小發(fā)生了變化,但是仍然滿足一定的數(shù)量關(guān)系,請(qǐng)你直接寫(xiě)出這兩種關(guān)系:

          在圖2中,線段AB、DBCB之間滿足的數(shù)量關(guān)系是 ;

          在圖3中,線段AB、DB、CB之間滿足的數(shù)量關(guān)系是 ;

          提出問(wèn)題

          4)智慧小組提出一個(gè)問(wèn)題:若圖3BCCD于點(diǎn)C時(shí),BC=2,則AC為多長(zhǎng)?請(qǐng)你解答此問(wèn)題.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,四邊形OA1B1C1,A1A2B2C2,A2A3B3C3,都是菱形,點(diǎn)A1,A2,A3,都在x軸上,點(diǎn)C1,C2C3,都在直線yx+上,且∠C1OA1=∠C2A1A2=∠C3A2A360°,OA11,則點(diǎn)C6的坐標(biāo)是__

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知如圖,在正方形ABCD中,AD=4,E,F(xiàn)分別是CD,BC上的一點(diǎn),且∠EAF=45°,EC=1,將△ADE繞點(diǎn)A沿順時(shí)針?lè)较蛐D(zhuǎn)90°后與△ABG重合,連接EF,過(guò)點(diǎn)B作BM∥AG,交AF于點(diǎn)M,則以下結(jié)論:①DE+BF=EF,②BF=,③AF=,④S△MEF=中正確的是  

          A. ①②③ B. ②③④ C. ①③④ D. ①②④

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】一汽車(chē)租賃公司擁有某種型號(hào)的汽車(chē)100輛.公司在經(jīng)營(yíng)中發(fā)現(xiàn)每輛車(chē)的月租金x()與每月租出的車(chē)輛數(shù)(y)有如下關(guān)系:

          x

          3000

          3200

          3500

          4000

          y

          100

          96

          90

          80

          1)觀察表格,用所學(xué)過(guò)的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識(shí)求出每月租出的車(chē)輛數(shù)y(輛)與每輛車(chē)的月租金x(元)之間的關(guān)系式.

          2)已知租出的車(chē)每輛每月需要維護(hù)費(fèi)150元,未租出的車(chē)每輛每月需要維護(hù)費(fèi)50元.用含xx≥3000)的代數(shù)式填表:

          租出的車(chē)輛數(shù)

          未租出的車(chē)輛數(shù)

          租出每輛車(chē)的月收益

          所有未租出的車(chē)輛每月的維護(hù)費(fèi)

          3)若你是該公司的經(jīng)理,你會(huì)將每輛車(chē)的月租金定為多少元,才能使公司獲得最大月收益?請(qǐng)求出公司的最大月收益是多少元.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平行四邊形ABCD中,點(diǎn)A、BC的坐標(biāo)分別是(1,0)、(3,1)、(3,3),雙曲線yk≠0,x0)過(guò)點(diǎn)D

          1)寫(xiě)出D點(diǎn)坐標(biāo);

          2)求雙曲線的解析式;

          3)作直線ACy軸于點(diǎn)E,連結(jié)DE,求CDE的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖是二次函數(shù)yax2+bx+ca≠0)圖象的一部分,對(duì)稱(chēng)軸是直線x=﹣2.關(guān)于下列結(jié)論:①ab0;②b24ac0;③9a3b+c0;④b4a0;⑤方程ax2+bx0的兩個(gè)根為x10,x2=﹣4,其中正確的結(jié)論有( 。

          A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某學(xué)校有一棟教學(xué)樓AB,小明(身高忽略不計(jì))在教學(xué)樓一側(cè)的斜坡底端C處測(cè)得教學(xué)樓頂端A的仰角為68°,他沿著斜坡向上行走到達(dá)斜坡頂端E處,又測(cè)得教學(xué)樓頂端A的仰角為45°.已知斜坡的坡角(∠ECD)為30°,坡面長(zhǎng)度CE6m,求樓房AB的高度.(結(jié)果精確到0.1m,參考數(shù)據(jù):tan68°≈2.48,≈1.73

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,已知直線與直線相交于點(diǎn)A,與軸相交于點(diǎn)B,與軸相交于點(diǎn)C,拋物線經(jīng)過(guò)點(diǎn)O、點(diǎn)A和點(diǎn)B,已知點(diǎn)A軸的距離等于2.

          1)求拋物線的解析式;

          2)點(diǎn)H為直線上方拋物線上一動(dòng)點(diǎn),當(dāng)點(diǎn)H的距離最大時(shí),求點(diǎn)H的坐標(biāo);

          3)如圖,P為射線OA的一個(gè)動(dòng)點(diǎn),點(diǎn)P從點(diǎn)O出發(fā),沿著OA方向以每秒個(gè)單位長(zhǎng)度的速度移動(dòng),以OP為邊在OA的上方作正方形OPMN,設(shè)正方形POMNOAC重疊的面積為S,設(shè)移動(dòng)時(shí)間為t秒,直接寫(xiě)出St之間的函數(shù)關(guān)系式.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案