日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2013•聊城)如圖,一只貓頭鷹蹲在一棵樹AC的B(點B在AC上)處,發(fā)現(xiàn)一只老鼠躲進短墻DF的另一側,貓頭鷹的視線被短墻遮住,為了尋找這只老鼠,它又飛至樹頂C處,已知短墻高DF=4米,短墻底部D與樹的底部A的距離為2.7米,貓頭鷹從C點觀測F點的俯角為53°,老鼠躲藏處M(點M在DE上)距D點3米.
          (參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
          (1)貓頭鷹飛至C處后,能否看到這只老鼠?為什么?
          (2)要捕捉到這只老鼠,貓頭鷹至少要飛多少米(精確到0.1米)?
          分析:(1)根據(jù)貓頭鷹從C點觀測F點的俯角為53°,可知∠DFG=90°-53°=37°,在△DFG中,已知DF的長度,求出DG的長度,若DG>3,則看不見老鼠,若DG<3,則可以看見老鼠;
          (2)根據(jù)(1)求出的DG長度,求出AG的長度,然后在Rt△CAG中,根據(jù)
          AG
          CG
          =sin∠C=sin37°,即可求出CG的長度.
          解答:解:(1)能看到;
          由題意得,∠DFG=90°-53°=37°,
          DG
          DF
          =tan∠DFG,
          ∵DF=4米,
          ∴DG=4×tan37°≈4×0.75=3(米),
          故能看到這只老鼠;

          (2)由(1)得,AG=AD+DG=2.7+3=5.7(米),
          AG
          CG
          =sin∠C=sin37°,
          則CG=
          AG
          sin37°
          5.7
          0.60
          =9.5(米).
          答:要捕捉到這只老鼠,貓頭鷹至少要飛約9.5米.
          點評:本題考查了解直角三角形的應用,解答本題的關鍵是構造直角三角形并解直角三角形,利用三角函數(shù)求解相關線段,難度一般.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          (2013•聊城)如圖,在等邊△ABC中,AB=6,D是BC的中點,將△ABD繞點A旋轉后得到△ACE,那么線段DE的長度為
          3
          3
          3
          3

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2013•聊城)如圖,D是△ABC的邊BC上一點,已知AB=4,AD=2.∠DAC=∠B,若△ABD的面積為a,則△ACD的面積為( 。

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2013•聊城)如圖,在平面直角坐標系中,拋物線y=
          1
          2
          x2
          經過平移得到拋物線y=
          1
          2
          x2-2x
          ,其對稱軸與兩段拋物線所圍成的陰影部分的面積為( 。

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2013•聊城)如圖,一次函數(shù)的圖象與x軸,y軸分別相交于A,B兩點,且與反比例函數(shù)y=-
          8x
          的圖象在第二象限交與點C,如果點A為的坐標為(2,0),B是AC的中點.
          (1)求點C的坐標;
          (2)求一次函數(shù)的解析式.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2013•聊城)如圖,AB是⊙O的直徑,AF是⊙O切線,CD是垂直于AB的弦,垂足為E,過點C作DA的平行線與AF相交于點F,CD=4
          3
          ,BE=2.求證:
          (1)四邊形FADC是菱形;
          (2)FC是⊙O的切線.

          查看答案和解析>>

          同步練習冊答案