日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在四邊形ABCD中,AB∥CD,∠A=90°,AB=5,CD=2.以A為圓心,AD為半徑的圓與BC邊相切于點M,與AB交于點E,將扇形A﹣DME剪下圍成一個圓錐,則圓錐的高為(
          A.1
          B.4
          C.
          D.

          【答案】C
          【解析】解:如圖,作CF⊥AB于F,連接AM.
          ∵AD∥CF,CD∥AF,
          ∴四邊形ADCF是平行四邊形,
          ∴∠A=90°,
          ∴四邊形ADCF是矩形,
          ∴AD=CF=AM,CD=AF=2,
          ∵AB=5,∴BF=3,
          在△AMB和△CFB中,
          ,
          ∴△AMB≌△CFB,
          ∴BM=BF=3,
          在Rt△AMB中,AM= = =4,
          設(shè)圓錐的高為h,底面半徑為r,
          由題意2πr= 2π4,
          ∴r=1,
          ∴h= = ,
          故選C.
          【考點精析】解答此題的關(guān)鍵在于理解切線的性質(zhì)定理的相關(guān)知識,掌握切線的性質(zhì):1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑,以及對圓錐的相關(guān)計算的理解,了解圓錐側(cè)面展開圖是一個扇形,這個扇形的半徑稱為圓錐的母線;圓錐側(cè)面積S=πrl;V圓錐=1/3πR2h.

          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          【題目】兩個全等的三角尺重疊放在△ACB的位置,將其中一個三角尺繞著點C按逆時針方向旋轉(zhuǎn)至△DCE的位置,使點A恰好落在邊DE上,AB與CE相交于點F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,則CF=cm.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】為測量某特種車輛的性能,研究制定了行駛指數(shù)P,P=K+1000,而K的大小與平均速度v(km/h)和行駛路程s(km)有關(guān)(不考慮其他因素),K由兩部分的和組成,一部分與v2成正比,另一部分與sv成正比.在實驗中得到了表格中的數(shù)據(jù):

          速度v

          40

          60

          路程s

          40

          70

          指數(shù)P

          1000

          1600


          (1)用含v和s的式子表示P;
          (2)當行駛指數(shù)為500,而行駛路程為40時,求平均速度的值;
          (3)當行駛路程為180時,若行駛指數(shù)值最大,求平均速度的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,△ABC是邊長為4個等邊三角形,D為AB邊的中點,以CD為直徑畫圓,則圖中陰影部分的面積為(結(jié)果保留π).

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,AB是⊙O的直徑,CD與⊙O相切于點C,與AB的延長線交于點D,DE⊥AD且與AC的延長線交于點E.
          (1)求證:DC=DE;
          (2)若tan∠CAB= ,AB=3,求BD的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知:如圖一,拋物線y=ax2+bx+c與x軸正半軸交于A、B兩點,與y軸交于點C,直線y=x﹣2經(jīng)過A、C兩點,且AB=2.

          (1)求拋物線的解析式;
          (2)若直線DE平行于x軸并從C點開始以每秒1個單位的速度沿y軸正方向平移,且分別交y軸、線段BC于點E,D,同時動點P從點B出發(fā),沿BO方向以每秒2個單位速度運動,(如圖2);當點P運動到原點O時,直線DE與點P都停止運動,連DP,若點P運動時間為t秒;設(shè)s= ,當t為何值時,s有最小值,并求出最小值.

          (3)在(2)的條件下,是否存在t的值,使以P、B、D為頂點的三角形與△ABC相似;若存在,求t的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】計算: ﹣|2 ﹣9tan30°|+( 1﹣(1﹣π)0

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過點A(﹣1,0)、C(0,3),與x軸交于另一點B,拋物線的頂點為D.

          (1)求此二次函數(shù)解析式;
          (2)連接DC、BC、DB,求證:△BCD是直角三角形;
          (3)在對稱軸右側(cè)的拋物線上是否存在點P,使得△PDC為等腰三角形?若存在,求出符合條件的點P的坐標;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,已知在Rt△ABC中,AB=AC=3 ,在△ABC內(nèi)作第一個內(nèi)接正方形DEFG;然后取GF的中點P,連接PD、PE,在△PDE內(nèi)作第二個內(nèi)接正方形HIKJ;再取線段KJ的中點Q,在△QHI內(nèi)作第三個內(nèi)接正方形…依次進行下去,則第2014個內(nèi)接正方形的邊長為

          查看答案和解析>>

          同步練習冊答案