日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知在數(shù)軸上,一動點從原點出發(fā),沿直線以每秒鐘個單位長度的速度來回移動,其移動方式是先向右移動個單位長度,再向左移動個單位長度,又向右移動個單位長度,再向左移動個單位長度,又向右移動個單位長度

          1)求出秒鐘后動點所處的位置;

          2)如果在數(shù)軸上還有一個定點,且與原點相距20個單位長度,問:動點從原點出發(fā),可能與點重合嗎?若能,則第一次與點重合需多長時間?若不能,請說明理由.

          【答案】1Q處于﹣2;(2)①當(dāng)點A在原點左邊時,時間=390秒(6.5分鐘);②當(dāng)點A原點左邊時,時間=410 6分鐘).

          【解析】

          1)先根據(jù)路程=速度×時間求出5秒鐘走過的路程,然后根據(jù)左減右加列式計算即可得解;
          2)分點A在原點左邊與右邊兩種情況分別求出動點走過的路程,然后根據(jù)時間=路程÷速度計算即可得解.

          解:(1∵2×5=10,

          Q走過的路程是1+2+3+4=10,Q處于:12+34=46=2

          2當(dāng)點A在原點左邊時,設(shè)需要第n次到達(dá)點A,則=20,解得n=39,

          動點Q走過的路程是

          1+|2|+3+|4|+5+…+|38|+39,

          =1+2+3+…+39

          ==780,

          時間=780÷2=390秒(6.5分鐘);

          當(dāng)點A原點左邊時,設(shè)需要第n次到達(dá)點A,則=20,

          解得n=40,

          動點Q走過的路程是

          1+|2|+3+|4|+5+…+39+|40|,

          =1+2+3+…+40,

          ==820,

          時間=820÷2=410 6分鐘).

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,等腰直角三角形OAA1的直角邊OAx軸上,點A1在第一象限,且OA=1,以點A1為直角頂點,OA1為一直角邊作等腰直角三角形OA1A2,再以點A2為直角頂點,OA2為直角邊作等腰直角三角形OA2A3依此規(guī)律,則點A2018的坐標(biāo)是_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,⊙O的半徑OA⊥OC,點D在上,且=2,OA=4.

          (1)∠COD=    °;

          (2)求弦AD的長;

          (3)P是半徑OC上一動點,連結(jié)AP、PD,請求出AP+PD的最小值,并說明理由.

          (解答上面各題時,請按題意,自行補(bǔ)足圖形)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】【問題原型】如圖1,在四邊形ABCD中,∠ADC=90°,AB=AC.E、F分別為AC、BC的中點,連結(jié)EF,DE.試說明:DE=EF

          【探究】如圖2,在問題原型的條件下,當(dāng)AC平分∠BAD,DEF=90°時,求∠BAD的大小

          【應(yīng)用】如圖3,在問題原型的條件下,當(dāng)AB=2,且四邊形CDEF是菱形時,直接寫出四邊形ABCD的面積

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在RtABC中,ACB=90°,BE平分ABC,D是邊AB上一點,以BD為直徑的O經(jīng)過點E,且交BC于點F.

          (1)求證:AC是O的切線;

          (2)若BF=6,O的半徑為5,求CE的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(2017浙江省湖州市)如圖,已知∠AOB=30°,在射線OA上取點O1,以O1為圓心的圓與OB相切;在射線O1A上取點O2,以O2為圓心,O2O1為半徑的圓與OB相切;在射線O2A上取點O3,以O3為圓心,O3O2為半徑的圓與OB相切;;在射線O9A上取點O10,以O10為圓心,O10O9為半徑的圓與OB相切.若⊙O1的半徑為1,則⊙O10的半徑長是______

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】定義:如圖①,拋物線y=ax2+bx+c(a≠0)與x軸交于A,B兩點,點P在該拋物線上(P點與A、B兩點不重合).如果△ABP的三邊滿足AP2+BP2=AB2,則稱點P為拋物線y=ax2+bx+c(a≠0)的勾股點.

          (1)直接寫出拋物線y=-x2+1的勾股點的坐標(biāo).

          (2)如圖②,已知拋物線y=ax2+bx(a≠0)與x軸交于A,B兩點,點P(1, )是拋物線的勾股點,求拋物線的函數(shù)表達(dá)式.

          (3)在(2)的條件下,點Q在拋物線上,求滿足條件S△ABQ=S△ABP的Q點(異于點P)的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】1)如圖,要把小河里的水引到田地A處,就作ABl(垂足為B),沿AB挖水溝,水溝最短.理由是___________

          2)把命題“平行于同一直線的兩直線平行”寫成“如果……,那么……”的形式._____________________________

          3)比較大。______

          4)已知是同類項,則m-3n的平方根是___

          5)已知點P的坐標(biāo)為(3a+6,2a),且點P到兩坐標(biāo)軸的距離相等,則點P的坐標(biāo)是______

          6 如圖,動點P在平面直角坐標(biāo)系中按圖中箭頭所示方向運動,第1次從原點運動到點(1,1),第2次接著運動到點(2,0),第3次接著運動到點(3,2),…,按這樣的運動規(guī)律,經(jīng)過第2018次運動后,動點P的坐標(biāo)是______________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知二次函數(shù)y=﹣x2+bx+c+1。

          1當(dāng)b=1時,求這個二次函數(shù)的對稱軸的方程;

          2c=b22b,問:b為何值時,二次函數(shù)的圖象與x軸相切?

          3若二次函數(shù)的圖象與x軸交于點Ax1,0),Bx2,0),且x1x2b0,與y軸的正半軸交于點M,以AB為直徑的半圓恰好過點M,二次函數(shù)的對稱軸lx軸、直線BM、直線AM分別交于點D、EF,且滿足=,求二次函數(shù)的表達(dá)式.

          查看答案和解析>>

          同步練習(xí)冊答案