日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知如圖,矩形OABC的長OA=, 寬OC=1,將AOC沿AC翻折得APC.

          (1)求∠PCB的度數(shù);

          (2)若P,A兩點在拋物線y=x2+bx+c上,求b,c的值,并說明點C在此拋物線上;

          (3)題(2)中的拋物線與矩形OABCCB相交于點D,與x軸相交于另外一點E,若點Mx軸上的點,Ny軸上的點,以點EM、DN為頂點的四邊形是平行四邊形,試求點M、N的坐標(biāo).

          【答案】(1)30°; (2)當(dāng)x=0時,y=1,故C(0,1)在拋物線的圖象上;(3)見解析

          【解析】(1)根據(jù)OC、OA的長,可求得∠OCA=∠ACP=60°(折疊的性質(zhì)),∠BCA=∠OAC=30°,由此可判斷出∠PCB的度數(shù).
          (2)過P作PQ⊥OA于Q,在Rt△PAQ中,易知PA=OA=3,而∠PAO=2∠PAC=60°,即可求出AQ、PQ的長,進(jìn)而可得到點P的坐標(biāo),將P、A坐標(biāo)代入拋物線的解析式中,即可得到b、c的值,從而確定拋物線的解析式,然后將C點坐標(biāo)代入拋物線的解析式中進(jìn)行驗證即可.
          (3)根據(jù)拋物線的解析式易求得C、D、E點的坐標(biāo),然后分兩種情況考慮:
          ①DE是平行四邊形的對角線,由于CD∥x軸,且C在y軸上,若過D作直線CE的平行線,那么此直線與x軸的交點即為M點,而N點即為C點,D、E的坐標(biāo)已經(jīng)求得,結(jié)合平行四邊形的性質(zhì)即可得到點M的坐標(biāo),而C點坐標(biāo)已知,即可得到N點的坐標(biāo);
          ②DE是平行四邊形的邊,由于A在x軸上,過A作DE的平行線,與y軸的交點即為N點,而M點即為A點;易求得∠DEA的度數(shù),即可得到∠NAO的度數(shù),已知OA的長,通過解直角三角形可求得ON的值,從而確定N點的坐標(biāo),而M點與A點重合,其坐標(biāo)已知;
          同理,由于C在y軸上,且CD∥x軸,過C作DE的平行線,也可找到符合條件的M、N點,解法同上.

          解:(1)在Rt△OAC中,OA=,OC=1,則∠OAC=30°,∠OCA=60°;
          根據(jù)折疊的性質(zhì)知:OA=AP=,∠ACO=∠ACP=60°;
          ∵∠BCA=∠OAC=30°,且∠ACP=60°,
          ∴∠PCB=30°.

          (2)過P作PQ⊥OA于Q;

          Rt△PAQ中,∠PAQ=60°,AP=;

          ∴OQ=AQ=,PQ=,

          所以P( );

          將P、A代入拋物線的表達(dá)式中,得:

          解得;

          即y=x2+x+1;

          當(dāng)x=0時,y=1,故C(0,1)在拋物線的圖象上.

          (3)①若DE是平行四邊形的對角線,點C在y軸上,CD平行x軸,

          ∴過點D作DM∥CE交x軸于M,則四邊形EMDC為平行四邊形,

          把y=1代入拋物線解析式得點D的坐標(biāo)為(,1)

          把y=0代入拋物線解析式得點E的坐標(biāo)為(,0)

          ∴M(,0);N點即為C點,坐標(biāo)是N(0,1);

          ②若DE是平行四邊形的邊,

          過點A作AN∥DE交y軸于N,四邊形DANE是平行四邊形,

          ∴DE=AN===2,

          ∴∠EAN=30°,∠DEA=30°,

          ∴M(,0),N(0,-1)

          同理過點C作CM∥DE交y軸于N,四邊形CMDE是平行四邊形,

          ∴M(-,0),N(0,1).

          “點睛”此題考查了矩形的性質(zhì)、圖形的翻折變換、二次函數(shù)解析式的確定、平行四邊形的判定和性質(zhì)等知識,同時考查了分類討論的數(shù)學(xué)思想,難度較大.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(1)如圖,直徑是50cm圓柱形油槽裝入油后,油深CD為15cm,求油面寬度AB的長.

          (2)如圖,在△ABC中,D、E分別是AB、AC的中點,BE=2DE,過點C作CF∥BE交DE的延長線于F,連接CD.

          求證:四邊形BCFE是菱形;

          在不添加任何輔助線和字母的情況下,請直接寫出圖中與△BEC面積相等的所有三角形(不包括△BEC).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】一組數(shù):8,9,7,10,6,9,9,6,則這組數(shù)的中位數(shù)與眾數(shù)的和是( 。
          A.16.5
          B.17
          C.17.5
          D.18

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)x是有理數(shù),那么下列各式中一定表示正數(shù)的是( 。

          A.2018xB.x+2018C.|2018x|D.|x|+2018

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】若三角形的三邊長分別為3,4,x , 則x的值可能是(  )
          A.1
          B.6
          C.7
          D.10

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系內(nèi),二次函數(shù)圖象的頂點為A(1,﹣4),且過點B(3,0).

          (1)求該二次函數(shù)的解析式;

          (2)將該二次函數(shù)圖象向右平移幾個單位,可使平移后所得圖象經(jīng)過坐標(biāo)原點?并直接寫出平移后所得圖象與x軸的另一個交點的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:在△ABC中,ACBC,∠ACB=90°,點DAB的中點,點EAB邊上一點.

          (1)如圖1,BF垂直CE于點F,交CD于點G,證明:AECG

          (2)如圖2,作AH垂直于CE的延長線,垂足為H,交CD的延長線于點M,則圖中與BE相等的線段是 ,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】直線l外有一定點A,點A到直線l的距離是7cm,B是直線l上的任意一點,則線段AB的長度可能是________cm(寫出一個滿足條件的值即可)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象經(jīng)過點,且當(dāng)時所對應(yīng)的函數(shù)值相等.一次函數(shù)與二次函數(shù)的圖象分別交于, 兩點,點在第一象限.

          )求二次函數(shù)的表達(dá)式.

          )連接,求的長.

          )連接, 是線段得中點,將點繞點旋轉(zhuǎn)得到點,連接, ,判斷四邊形的性狀,并證明你的結(jié)論.

          查看答案和解析>>

          同步練習(xí)冊答案