日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖1,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB與CE交于F,ED與AB,BC,分別交于M,H.

          (1)求證:CF=CH;
          (2)如圖2,△ABC不動(dòng),將△EDC繞點(diǎn)C旋轉(zhuǎn)到∠BCE=45°時(shí),試判斷四邊形ACDM是什么四邊形?并證明你的結(jié)論.

          【答案】
          (1)

          證明:∵AC=CE=CB=CD,∠ACB=∠ECD=90°,

          ∴∠A=∠B=∠D=∠E=45°.

          在△BCF和△ECH中,

          ∴△BCF≌△ECH(ASA),

          ∴CF=CH(全等三角形的對(duì)應(yīng)邊相等);


          (2)

          解:四邊形ACDM是菱形.

          證明:∵∠ACB=∠DCE=90°,∠BCE=45°,

          ∴∠1=∠2=45°.

          ∵∠E=45°,

          ∴∠1=∠E,

          ∴AC∥DE,

          ∴∠AMH=180°﹣∠A=135°=∠ACD,

          又∵∠A=∠D=45°,

          ∴四邊形ACDM是平行四邊形(兩組對(duì)角相等的四邊形是平行四邊形),

          ∵AC=CD,

          ∴四邊形ACDM是菱形.


          【解析】(1)要證明CF=CH,可先證明△BCF≌△ECH,由∠ABC=∠DCE=90°,AC=CE=CB=CD,可得∠B=∠E=45°,得出CF=CH;
          (2)根據(jù)△EDC繞點(diǎn)C旋轉(zhuǎn)到∠BCE=45°,推出四邊形ACDM是平行四邊形,由AC=CD判斷出四邊形ACDM是菱形.
          此題考查了圖形的旋轉(zhuǎn)問(wèn)題,涉及知識(shí)點(diǎn)有全等三角形、平行四邊形和菱形的判定。

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知正方形ABCD的邊長(zhǎng)為12,BE=EC,將正方形邊CD沿DE折疊到DF,延長(zhǎng)EF交AB于G,連接DG,現(xiàn)在有如下4個(gè)結(jié)論:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④SBEF=.在以上4個(gè)結(jié)論中,正確的有( 。

          A.1
          B.2
          C.3
          D.4

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知關(guān)于x的一元二次方程mx2+mx+m﹣1=0有兩個(gè)相等的實(shí)數(shù)根.
          (1)求m的值;
          (2)解原方程:

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知二次函數(shù)y=ax2的圖象經(jīng)過(guò)點(diǎn)(2,1).

          (1)求二次函數(shù)y=ax2的解析式;
          (2)一次函數(shù)y=mx+4的圖象與二次函數(shù)y=ax2的圖象交于點(diǎn)A(x1、y1)、B(x2、y2)兩點(diǎn).
          ①當(dāng)m=時(shí)(圖①),求證:△AOB為直角三角形;
          ②試判斷當(dāng)m≠時(shí)(圖②),△AOB的形狀,并證明; n>S扇形DOE求得即可.
          (3)根據(jù)第2問(wèn),說(shuō)出一條你能得到的結(jié)論.(不要求證明)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在直角坐標(biāo)系中,拋物線經(jīng)過(guò)點(diǎn)A(0,4),B(1,0),C(5,0),其對(duì)稱(chēng)軸與x軸相交于點(diǎn)M.

          (1)求拋物線的解析式和對(duì)稱(chēng)軸;
          (2)在拋物線的對(duì)稱(chēng)軸上是否存在一點(diǎn)P,使△PAB的周長(zhǎng)最小?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
          (3)連接AC,在直線AC的下方的拋物線上,是否存在一點(diǎn)N,使△NAC的面積最大?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,拋物線y=﹣x2+2x+3與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn),請(qǐng)解決下列問(wèn)題.

          (1)填空:點(diǎn)C的坐標(biāo)為 點(diǎn)D的坐標(biāo)為 ;
          (2)設(shè)點(diǎn)P的坐標(biāo)為(a,0),當(dāng)|PD﹣PC|最大時(shí),求α的值并在圖中標(biāo)出點(diǎn)P的位置;
          (3)在(2)的條件下,將△BCP沿x軸的正方向平移得到△B′C′P′,設(shè)點(diǎn)C對(duì)應(yīng)點(diǎn)C′的橫坐標(biāo)為t(其中0<t<6),在運(yùn)動(dòng)過(guò)程中△B′C′P′與△BCD重疊部分的面積為S,求S與t之間的關(guān)系式,并直接寫(xiě)出當(dāng)t為何值時(shí)S最大,最大值為多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在以O(shè)為圓心3cm為半徑的圓周上,依次有A、B、C三個(gè)點(diǎn),若四邊形OABC為菱形,則該菱形的邊長(zhǎng)等于  cm;弦AC所對(duì)的弧長(zhǎng)等于  cm.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在△ABC中,∠ACB°,AB=5,BC=3,P是AB邊上的動(dòng)點(diǎn)(不與點(diǎn)B重合),將△BCP沿CP所在的直線翻折,得到△B′CP,連接B′A,則B′A長(zhǎng)度的最小值是 .

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在邊長(zhǎng)為1的小正方形組成的正方形網(wǎng)格中建立如圖片所示的平面直角坐標(biāo)系,已知格點(diǎn)三角形ABC(三角形的三個(gè)頂點(diǎn)都在小正方形上)

          (1)畫(huà)出△ABC關(guān)于直線l:x=﹣1的對(duì)稱(chēng)三角形△A1B1C1;并寫(xiě)出A1、B1、C1的坐標(biāo).
          (2)在直線x=﹣l上找一點(diǎn)D,使BD+CD最小,滿(mǎn)足條件的D點(diǎn)為

          查看答案和解析>>

          同步練習(xí)冊(cè)答案