日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知△PDC⊙O的內(nèi)接三角形,CP=CD,若將△PCD繞點P順時針旋轉(zhuǎn),當(dāng)點C剛落在⊙O上的A處時,停止旋轉(zhuǎn),此時點D落在點B處.

          (1)求證:PB⊙O相切;

          (2)當(dāng)PD=2,∠DPC=30°時,求⊙O的半徑長.

          【答案】(1)詳見解析;(2)2.

          【解析】

          (1)連接OA、OP,由旋轉(zhuǎn)可得:PAB≌△PCD,再由全等三角形的性質(zhì)可知AP=PC=DC,再根據(jù)BPA=∠DPC=∠D可得出BPO=90°,進而可知PBO相切;
          (2)過點AAEPB,垂足為E,根據(jù)BPA=30°,PB=2,△PAB是等腰三角形,可得出BE=EP=,PA=2,PBO相切于點P可知APO=60°,故可知PA=2.

          (1)證明:連接OA、OP,OC,由旋轉(zhuǎn)可得:△PAB≌△PCD,

          ∴PA=PC=DC,

          ∴AP=PC=DC,∠AOP=∠POC=2∠D,∠APO=∠OAP=

          ∵∠BPA=∠DPC=∠D,

          ∴∠BPO=∠BPA+=90°

          ∴PB⊙O相切;

          (2)解:過點AAE⊥PB,垂足為E,

          ∵∠BPA=30°,PB=2,△PAB是等腰三角形;

          ∴BE=EP=

          PA===2

          ∵PB⊙O相切于點P,

          ∴∠APO=60°,

          ∴OP=PA=2.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】1)探究新知:如圖1,已知△ABC△ABD的面積相等, 試判斷ABCD的位置關(guān)系,并說明理由.

          2)結(jié)論應(yīng)用:如圖2,點M,N在反比例函數(shù)k0)的圖象上,過點MME⊥y軸,過點NNF⊥x軸,垂足分別為E,F 試證明:MN∥EF

          3)變式探究:如圖3,點MN在反比例函數(shù)k0)的圖象上,過點MME⊥y軸,過點NNF⊥x軸,過點MMG⊥x軸,過點NNH⊥y軸,垂足分別為E、F、GH 試證明:EF ∥GH

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知在ABC中,BC=AC,以BC為直徑的O與邊AB、AC分別交于點D、E,DFAC于點F.

          (1)求證:點D是AB的中點;

          (2)判斷DF與O的位置關(guān)系,并證明你的結(jié)論;

          (3)若O的半徑為10,sinB=,求陰影部分面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知在平行四邊形ABCD中,AB=5,BC=8,cosB=,點EBC邊上的動點,當(dāng)以CE為半徑的⊙C與邊AD有兩個交點時,半徑CE的取值范圍是( 。

          A. 0<CE≤8 B. 0<CE≤5 C. 3<CE≤8 D. 3<CE≤5

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中,AB=AC,以AB為直徑作圓O,分別交BC于點D,交CA的延長線于點E,過點DDH⊥AC于點H,連接DE交線段OA于點F.

          (1)求證:DH是圓O的切線;

          (2)若,求證:A為EH的中點.

          (3)若EA=EF=1,求圓O的半徑.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,A是半徑為6cm的⊙O上的定點,動點PA出發(fā),以πcm/s的速度沿圓周按順時針方向運動,當(dāng)點P回到A時立即停止運動.設(shè)點P運動時間為t(s);

          (1)當(dāng)t=6s時,∠POA的度數(shù)是________;

          (2)當(dāng)t為多少時,∠POA=120°;

          (3)如果點BOA延長線上的一點,且AB=AO,問t為多少時,POB為直角三角形?請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知RtABCRtADE,ABCADE=90°,BCDE相交于點F,連接CDEB.

          (1)圖中還有幾對全等三角形,請你一一列舉;

          (2)求證:CFEF.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】1)勾股定理的證法多樣,其中“面積法”是常用方法,小明發(fā)現(xiàn):當(dāng)四個全等的直角三角形如圖擺放時,可以用“面積法”來證明勾股定理.(寫出勾股定理的內(nèi)容并證明)

          2)已知實數(shù)xy,z滿足:,試問長度分別為x、y、z的三條線段能否組成一個三角形?如果能,請求出該三角形的面積;如果不能,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,若四邊形、四邊形都是正方形,顯然圖中有,

          當(dāng)正方形旋轉(zhuǎn)到如圖的位置時,是否成立?若成立,請給出證明;若不成立,請說明理由;

          當(dāng)正方形旋轉(zhuǎn)到如圖的位置時,延長,交

          求證:;

          當(dāng),時,求的長.

          查看答案和解析>>

          同步練習(xí)冊答案