日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 一只排球從P點打過球網(wǎng)MN,已知該排球飛行距離x(米)與其距地面高度y(米)之間的關(guān)系式為y=-
          1
          12
          x2+
          2
          3
          x+
          3
          2
          (如圖).已知球網(wǎng)MN距原點5米,運動員(用線段AB表示)準(zhǔn)備跳起扣球.已知該運動員扣球的最大高度為
          9
          4
          米,設(shè)他扣球的起跳點A的橫坐標(biāo)為k,因球的高度高于他扣球的最大高度而導(dǎo)致扣球失敗,則k的取值范圍是______.
          把A的橫坐標(biāo)為k代入函數(shù)解析式,再由該運動員扣球的最大高度為
          9
          4
          米,列出不等式得,
          -
          1
          12
          k2+
          2
          3
          k+
          3
          2
          9
          4

          解出不等式得4-
          7
          <k<4+
          7
          ,
          又因A點在MN的右側(cè),且MN距原點5米,所以k的取值范圍是5<k<4+
          7
          ;
          故填5<k<4+
          7
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,已知:拋物線y=ax2+bx-4(a≠0)與x軸交于A、B兩點,與y軸交于點C,A、B兩點的坐標(biāo)分別為A(-6,0)、B(2,0).
          (1)求這條拋物線的函數(shù)表達(dá)式;
          (2)已知在拋物線的對稱軸上存在一點P,使得PB+PC的值最小,請求出點P的坐標(biāo);
          (3)若點D是線段OC上的一個動點(不與點O、點C重合).過點D作DEPC交x軸于點E.連接PD、PE.設(shè)CD的長為m,△PDE的面積為S.求S與m之間的函數(shù)關(guān)系式.試說明S是否存在最大值?若存在,請求出最大值;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖所示的直角坐標(biāo)系中,若△ABC是等腰直角三角形,AB=AC=8
          2
          ,D為斜邊BC的中點.點P由點A出發(fā)沿線段AB作勻速運動,P′是P關(guān)于AD的對稱點;點Q由點D出發(fā)沿射線DC方向作勻速運動,且滿足四邊形QDPP′是平行四邊形.設(shè)平行四邊形QDPP′的面積為y,DQ=x.
          (1)求出y關(guān)于x的函數(shù)解析式;
          (2)求當(dāng)y取最大值時,過點P,A,P′的二次函數(shù)解析式;
          (3)能否在(2)中所求的二次函數(shù)圖象上找一點E使△EPP′的面積為20?若存在,求出E點坐標(biāo);若不存在,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          拋物線y=ax2+bx+c交x軸于A,B兩點,交y軸于點C,對稱軸為直線x=1.且A、C兩點的坐標(biāo)分別為A(-1,0),C(0,-3).
          (1)求拋物線y=ax2+bx+c的解析式;
          (2)在對稱軸上是否存在一個點P,使△PAC的周長最小?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          已知拋物線經(jīng)過A(-1,0),B(0,-2),C(1,-2),且與x軸的另一個交點為E.
          (1)求拋物線的解析式;
          (2)用配方法求拋物線的頂點D的坐標(biāo)和對稱軸;
          (3)求四邊形ABDE的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在平面直角坐標(biāo)系xOy中,已知點A(-2,0),點B在x軸的正半軸上,點M在y軸的負(fù)半軸上,且|AB|=6,cos∠OBM=
          5
          5
          ,點C是M關(guān)于x軸的對稱點.
          (1)求過A、B、C三點的拋物線的函數(shù)表達(dá)式及其頂點D的坐標(biāo);
          (2)設(shè)直線CD交x軸于點E,在線段OB的垂直平分線上求一點P,使點P到直線CD的距離等于點P到原點的O距離;
          (3)在直線CD上方(1)中的拋物線(不包括C、D)上是否存在點N,使四邊形NCOD的面積最大?若存在,求出點N的坐標(biāo)及該四邊形面積的最大值;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          某隧道橫斷面由拋物線與矩形的三邊組成,尺寸如圖所示.
          (1)以隧道橫斷面拋物線的頂點為原點,以拋物線的對稱軸為y軸,建立直角坐標(biāo)系,求該拋物線對應(yīng)的函數(shù)關(guān)系式;
          (2)某卡車空車時能通過此隧道,現(xiàn)裝載一集裝箱箱寬3m,車與箱共高4.5m,此車能否通過隧道?并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,直線y=-
          4
          3
          x+4與x軸交于點A,與y軸交于點C,已知二次函數(shù)的圖象經(jīng)過點A、C和點B(-1,0).
          (1)求該二次函數(shù)的關(guān)系式;
          (2)設(shè)該二次函數(shù)的圖象的頂點為M,求四邊形AOCM的面積;
          (3)有兩動點D、E同時從點O出發(fā),其中點D以每秒
          3
          2
          個單位長度的速度沿折線OAC按O?A?C的路線運動,點E以每秒4個單位長度的速度沿折線OCA按O?C?A的路線運動,當(dāng)D、E兩點相遇時,它們都停止運動.設(shè)D、E同時從點O出發(fā)t秒時,△ODE的面積為S.
          ①請問D、E兩點在運動過程中,是否存在DEOC,若存在,請求出此時t的值;若不存在,請說明理由;
          ②請求出S關(guān)于t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
          ③設(shè)S0是②中函數(shù)S的最大值,那么S0=______.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx經(jīng)過B(8、0),C(6、2
          3
          )兩點,點A是點C關(guān)于拋物線y=ax2+bx的對稱軸的對稱點,連接OA、AC、BC

          (1)求拋物線的解析式.
          (2)動點E從點O出發(fā),速度為3個單位/秒,沿O→A→C勻速運動:動點F從點O出發(fā),速度為4個單位/秒,沿O→B勻速運動,動點E、F同時出發(fā),若設(shè)運動時間為t秒(0≤t≤2),△OEF的面積為S,請求出運動過程中S與t的關(guān)系式.
          (3)設(shè)P是拋物線對稱軸上的一點,是否存在點P使以O(shè)、E、F、P為頂點的四邊形是平行四邊形?若不存在,請說明理由;若存在,直接寫出點P的坐標(biāo).

          查看答案和解析>>

          同步練習(xí)冊答案