日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在半徑為5的⊙O中,弦AB=6,P是弦AB所對的優(yōu)弧上的動點,連接AP,過點AAP的垂線交射線PB于點C,當(dāng)PAB是等腰三角形時,線段BC的長為____

          【答案】6

          【解析】

          由于本題的等腰三角形的底和腰不確定,分三種情況討論:

          ①當(dāng)BA=BP時,利用直角三角形斜邊的中線等于斜邊的一半;

          ②當(dāng)AB=AP時,連接AOPB于點D,過點OOEAB于點E,易得AOE∽△ABD,利用相似三角形的性質(zhì)求得BD,PB,然后利用相似三角形的判定定理ABD∽△CPA,代入數(shù)據(jù)得出結(jié)果;

          ③當(dāng)PA=PB時,連接PO并延長,交AB于點F,過點CCGAB,交AB的延長線于點G,連接OB,則PFAB,易得AF=FB=3,利用勾股定理得OF=4,FP=9,易得PFB∽△CGB,利用相似三角形的性質(zhì)可求出CGBG的值,設(shè)BG=t,則CG=3t,利用相似三角形的判定定理得APF∽△CAG,利用相似三角形的性質(zhì)得比例關(guān)系解得t,在RtBCG中,由勾股定理得出BC的長.

          ①當(dāng)BA=BP時,

          AB=BP=BC=6,即線段BC的長為6;

          ②當(dāng)AB=AP時,如圖1,連接AOPB于點D,過點OOEAB于點E,則ADPBAE=AB=3,

          BD=DP

          RtAEO中,AE=3,AO=5,

          OE==4

          ∵∠OAE=BAD,∠AEO=ADB=90°

          ∴△AOE∽△ABD,

          ,即,

          BD=

          BD=PD=,即PB=

          AB=AP=6,

          ∴∠ABD=APC

          ∵∠PAC=ADB=90°,

          ∴△ABD∽△CPA,

          ,即,

          CP=,

          BC=BP-CP=-=;

          ③當(dāng)PA=PB時,

          如圖2,連接PO并延長,交AB于點F,過點CCGAB,交AB的延長線于點G,連接OB,則PFAB,

          AF=FB=3,

          RtOFB中,OB=5,FB=3,∴OF=4,

          FP=9

          ∵∠PAF=ABP=CBG,∠AFP=CGB=90°,

          ∴△PFB∽△CGB,

          ,

          設(shè)BG=t,則CG=3t

          ∵∠PAF=ACG,∠AFP=AGC=90°,

          ∴△APF∽△CAG,

          ,

          解得t=,

          BG=CG=,

          RtBCG中,BC=,

          綜上所述,當(dāng)PAB是等腰三角形時,線段BC的長為6;

          故答案為:6

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,點A(2,0)B(0,1),以線段AB為邊在第二象限作矩形ABCD,雙曲線(k<0)經(jīng)過點D,連接BD,若四邊形OADB的面積為6,則k的值是_____.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,⊙OABC的外接圓,AB為直徑,∠BAC的平分線交⊙O于點D,過點DDEAC分別交AC、AB的延長線于點EF

          1)求證:EF是⊙O的切線;

          2)若AC=4CE=2,求的長度.(結(jié)果保留π

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某公司推出一款產(chǎn)品,經(jīng)市場調(diào)查發(fā)現(xiàn),該產(chǎn)品的日銷售量y(個)與銷售單價x(元)之間滿足一次函數(shù)關(guān)系.關(guān)于銷售單價,日銷售量,日銷售利潤的幾組對應(yīng)值如下表:

          銷售單價x(元)

          85

          95

          105

          115

          日銷售量y(

          175

          125

          75

          m

          日銷售利潤w(元)

          875

          1875

          1875

          875

          (注:日銷售利潤=日銷售量×(銷售單價﹣成本單價))

          (1)求y關(guān)于x的函數(shù)解析式(不要求寫出x的取值范圍)及m的值;

          (2)根據(jù)以上信息,填空:

          該產(chǎn)品的成本單價是   元,當(dāng)銷售單價x=   元時,日銷售利潤w最大,最大值是   元;

          (3)公司計劃開展科技創(chuàng)新,以降低該產(chǎn)品的成本,預(yù)計在今后的銷售中,日銷售量與銷售單價仍存在(1)中的關(guān)系.若想實現(xiàn)銷售單價為90元時,日銷售利潤不低于3750元的銷售目標(biāo),該產(chǎn)品的成本單價應(yīng)不超過多少元?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)軸于點,交軸于點,在軸上有一點,連接.

          (1)求二次函數(shù)的表達(dá)式;

          (2)若點為拋物線在軸負(fù)半軸上方的一個動點,求面積的最大值;

          (3)拋物線對稱軸上是否存在點,使為等腰三角形,若存在,請直接寫出所有點的坐標(biāo),若不存在請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖①,在矩形紙片ABCD中,AB=4,AD=6.點EF分別在AB,DC上(E不與A,D重合,F不與B,C重合),現(xiàn)以EF為折痕,將矩形紙片ABCD折疊.

          1)當(dāng)A點落在BC上時(如圖②),求證:EFA是等腰三角形;

          2)當(dāng)A點與C重合時,試求EFA的面積;

          3)當(dāng)A點與DC的中點重合時,試求折痕EF的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】墊球是排球隊常規(guī)訓(xùn)練的重要項目之一.下列圖表中的數(shù)據(jù)是甲、乙、丙三人每人十次墊球測試的成績.測試規(guī)則為連續(xù)接球10個,每墊球到位1個記1分.

                    運動員甲測試成績表

          測試序號

          1

          2

          3

          4

          5

          6

          7

          8

          9

          10

          成績(分)

          7

          6

          8

          7

          7

          5

          8

          7

          8

          7

          (1)寫出運動員甲測試成績的眾數(shù)為_____;運動員乙測試成績的中位數(shù)為_____;運動員丙測試成績的平均數(shù)為_____;

          (2)經(jīng)計算三人成績的方差分別為S2=0.8、S2=0.4、S2=0.8,請綜合分析,在他們?nèi)酥羞x擇一位墊球成績優(yōu)秀且較為穩(wěn)定的接球能手作為自由人,你認(rèn)為選誰更合適?為什么?

          (3)甲、乙、丙三人相互之間進(jìn)行墊球練習(xí),每個人的球都等可能的傳給其他兩人,球最先從甲手中傳出,第三輪結(jié)束時球回到甲手中的概率是多少?(用樹狀圖或列表法解答)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,的直徑,點上一動點,過點的切線,連接并延長,交過點的切線于點,點的中點,連接,.

          1)求證:切線;

          2)當(dāng)_______度時,四邊形為正方形;

          3)連接于點,連接,若_______時,四邊形為菱形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,以RtABC的斜邊BC為一邊在ABC的同側(cè)作正方形BCEF,設(shè)正方形的中心為O,連接AO,如果AB=4,AO=6,那么AC=_____

          查看答案和解析>>

          同步練習(xí)冊答案