日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知:拋物線y=ax2+bx+c(a>0)的圖象經(jīng)過點(diǎn)B(12,0)和C(0,-6),對(duì)稱軸為x=2.

          (1)求該拋物線的解析式;
          (2)點(diǎn)D在線段AB上且AD=AC,若動(dòng)點(diǎn)P從A出發(fā)沿線段AB以每秒1個(gè)單位長(zhǎng)度的速度勻速運(yùn)動(dòng),同時(shí)另一動(dòng)點(diǎn)Q以某一速度從C出發(fā)沿線段CB勻速運(yùn)動(dòng),問是否存在某一時(shí)刻,使線段PQ被直線CD垂直平分?若存在,請(qǐng)求出此時(shí)的時(shí)間t(秒)和點(diǎn)Q的運(yùn)動(dòng)速度;若不存在,請(qǐng)說明理由;
          (3)在(2)的結(jié)論下,直線x=1上是否存在點(diǎn)M,使△MPQ為等腰三角形?若存在,請(qǐng)求出所有點(diǎn)M的坐標(biāo);若不存在請(qǐng)說明理由.

          (1) y=x2x-6(2) (3)見解析

          解析試題分析:(1)把點(diǎn)B、C的坐標(biāo)代入拋物線解析式,根據(jù)對(duì)稱軸解析式列出關(guān)于a、b、c的方程組,求解即可;(2)根據(jù)拋物線解析式求出點(diǎn)A的坐標(biāo),再利用勾股定理列式求出AC的長(zhǎng),然后求出OD,可得點(diǎn)D在拋物線對(duì)稱軸上,根據(jù)線段垂直平分線上的性質(zhì)可得∠PDC=∠QDC,PD=DQ,再根據(jù)等邊對(duì)等角可得∠PDC=∠ACD,從而得到∠QDC=∠ACD,再根據(jù)內(nèi)錯(cuò)角相等,兩直線平行可得PQ∥AC,再根據(jù)點(diǎn)D在對(duì)稱軸上判斷出DQ是△ABC的中位線,根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半求出DQ=AC,再求出AP,然后根據(jù)時(shí)間=路程÷速度求出點(diǎn)P運(yùn)動(dòng)的時(shí)間t,根據(jù)勾股定理求出BC,然后求出CQ,根據(jù)速度=路程÷時(shí)間,計(jì)算即可求出點(diǎn)Q的速度.(3)假設(shè)存在這樣的點(diǎn)M,使得△MPQ為等腰三角形,那么就需要要分類討論:①當(dāng)MP=MQ,即M為頂點(diǎn);②;當(dāng)PQ為等腰△MPQ的腰時(shí),且P為頂點(diǎn);③當(dāng)PQ為等腰△MPQ的腰時(shí),且Q為頂點(diǎn).進(jìn)行分類求解即可.
          試題解析:解:方法一:∵拋物線過C(0,-6)
          ∴c=-6, 即y=ax2+bx-6
           ,解得:a= ,b=-
          ∴該拋物線的解析式為y=x2x-6;
          方法二:∵A、B關(guān)于x=2對(duì)稱
          ∴A(-8,0),設(shè)y=a(x+8)(x-12) 
          C在拋物線上,∴-6=a×8×(-12) 即a=
          ∴該拋物線的解析式為:y=x2x-6.
          (2)存在,設(shè)直線CD垂直平分PQ,
          在Rt△AOC中,AC==10=AD
          ∴點(diǎn)D在對(duì)稱軸上,連結(jié)DQ 顯然∠PDC=∠QDC,
          由已知∠PDC=∠ACD,
          ∴∠QDC=∠ACD,∴DQ∥AC,
          DB=AB-AD=20-10=10
          ∴DQ為△ABC的中位線,∴DQ=AC=5.
          AP=AD-PD=AD-DQ=10-5=5
          ∴t=5÷1=5(秒) 
          ∴存在t=5(秒)時(shí),線段PQ被直線CD垂直平分,
          在Rt△BOC中, BC==6 ∴CQ=3 
          ∴點(diǎn)Q的運(yùn)動(dòng)速度為每秒單位長(zhǎng)度.
          (3)存在 過點(diǎn)Q作QH⊥x軸于H,則QH=3,PH=9
          在Rt△PQH中,PQ==3.
          ①當(dāng)MP=MQ,即M為頂點(diǎn),
          設(shè)直線CD的直線方程為:y=kx+b(k≠0),則:
            ,解得:.
          ∴y=3x-6
          當(dāng)x=1時(shí),y=-3 , ∴M1(1, -3).
          ②當(dāng)PQ為等腰△MPQ的腰時(shí),且P為頂點(diǎn).
          設(shè)直線x=1上存在點(diǎn)M(1,y) ,由勾股定理得:
          42+y2=90  即y=±
          ∴M2(1,)   M3(1,-).
          ③當(dāng)PQ為等腰△MPQ的腰時(shí),且Q為頂點(diǎn).
          過點(diǎn)Q作QE⊥y軸于E,交直線x=1于F,則F(1, -3)
          設(shè)直線x=1存在點(diǎn)M(1,y), 由勾股定理得:
          (y+3)2+52=90 即y=-3±
          ∴M4(1, -3+)   M5((1, -3-) .
          綜上所述:存在這樣的五點(diǎn):
          M1(1, -3),  M2(1,),  M3(1,-),  M4(1, -3+),
          M5((1, -3-)

          考點(diǎn):二次函數(shù)綜合題.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          已知,關(guān)于x的二次函數(shù),(k為正整數(shù)).

          (1)若二次函數(shù)的圖象與x軸有兩個(gè)交點(diǎn),求k的值.
          (2)若關(guān)于x的一元二次方程(k為正整數(shù))有兩個(gè)不相等的整數(shù)解,點(diǎn)A(m,y1),B(m+1,y2),C(m+2,y3)都在二次函數(shù)(k為正整數(shù))圖象上,求使y1≤y2≤y3成立的m的取值范圍.
          (3)將(2)中的拋物線平移,當(dāng)頂點(diǎn)至原點(diǎn)時(shí),直線y=2x+b交拋物線于A(-1,n)、B(2,t)兩點(diǎn),問在y軸上是否存在一點(diǎn)C,使得△ABC的內(nèi)心在y軸上.若存在,求出點(diǎn)C的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          已知拋物線y=x²-4x+3.
          (1)該拋物線的對(duì)稱軸是       ,頂點(diǎn)坐標(biāo)               
          (2)將該拋物線向上平移2個(gè)單位長(zhǎng)度,再向左平移3個(gè)單位長(zhǎng)度得到新的二次函數(shù)圖像,請(qǐng)寫出相應(yīng)的解析式,并用列表,描點(diǎn),連線的方法畫出新二次函數(shù)的圖像;

          x
           

           
           
           
           
           
           
           
           
           
           
           

           
          y
           

           
           
           
           
           
           
           
           
           
           
           

           
           

          (3)新圖像上兩點(diǎn)A(x1,y1),B(x2,y2),它們的橫坐標(biāo)滿足<-2,且-1<<0,試比較y1,y2,0三者的大小關(guān)系.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          定義:把一個(gè)半圓與拋物線的一部分合成封閉圖形,我們把這個(gè)封閉圖形稱為“蛋圓”.如果一條直線與“蛋圓”只有一個(gè)交點(diǎn),那么這條直線叫做“蛋圓”的切線.如圖,A,B,C,D分別是“蛋圓”與坐標(biāo)軸的交點(diǎn),已知點(diǎn)D的坐標(biāo)為(0,8),AB為半圓的直徑,半圓的圓心M的坐標(biāo)為(1,0),半圓半徑為3.

          (1)請(qǐng)你直接寫出“蛋圓”拋物線部分的解析式          ,自變量的取值范圍是          ;
          (2)請(qǐng)你求出過點(diǎn)C的“蛋圓”切線與x軸的交點(diǎn)坐標(biāo);
          (3)求經(jīng)過點(diǎn)D的“蛋圓”切線的解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          已知:如圖,在平面直角坐標(biāo)系中,拋物線過點(diǎn)A(6,0)和點(diǎn)B(3,).

          (1)求拋物線的解析式;
          (2)將拋物線沿x軸翻折得拋物線,求拋物線的解析式;
          (3)在(2)的條件下,拋物線上是否存在點(diǎn)M,使相似?如果存在,求出點(diǎn)M的坐標(biāo);如果不存在,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          一場(chǎng)籃球賽中,小明跳起投籃,已知球出手時(shí)離地面高米,與籃圈中心的水平距離為8米,當(dāng)球出手后水平距離為4米時(shí)到達(dá)最大高度4米,若籃球運(yùn)行的軌跡為拋物線,籃圈中心距離地面3米.

          (1)建立如圖的平面直角坐標(biāo)系,求拋物線的解析式;
          (2)問此球能否投中?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          如圖,用長(zhǎng)為20米的籬笆恰好圍成一個(gè)扇形花壇,且扇形花壇的圓心角小于180°,設(shè)扇形花壇的半徑為米,面積為平方米.(注:的近似值取3)

          (1)求出的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
          (2)當(dāng)半徑為何值時(shí),扇形花壇的面積最大,并求面積的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          已知:如圖,拋物線與y軸交于點(diǎn)C(0,4),與x軸交于點(diǎn)A、B,點(diǎn)A的坐標(biāo)為(4,0).

          (1)求該拋物線的解析式;
          (2)點(diǎn)Q是線段AB上的動(dòng)點(diǎn),過點(diǎn)Q作QE∥AC,交BC于點(diǎn)E,連接CQ.當(dāng)△CQE的面積最大時(shí),求點(diǎn)Q的坐標(biāo);
          (3)若平行于x軸的動(dòng)直線與該拋物線交于點(diǎn)P,與直線AC交于點(diǎn)F,點(diǎn)D的坐標(biāo)為(2,0).問:是否存在這樣的直線,使得△ODF是等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          已知拋物線經(jīng)過A(﹣2,0),B(﹣3,3)及原點(diǎn)O,頂點(diǎn)為C.
          (1)求拋物線的函數(shù)解析式;
          (2)求拋物線的對(duì)稱軸和C點(diǎn)的坐標(biāo).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案