日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,直線OC,BC的函數(shù)關系式分別y1=x和y2=-x+6,動點P(x,0)在OB上運動(0<x<6),過點P作直線m與x軸垂直.
          (1)求點C的坐標,并回答當x取何值時y1>y2
          (2)猜想△COB是什么三角形?并用所學的幾何知識證明你的結論.
          (3)設在△COB中位于直線m左側部分的面積為S,求出S與x之間函數(shù)關系式?

          解:(1)由題意得:
          ,
          解得:,
          ∴點C的坐標為(3,3);
          當x>3時y1>y2

          (2)△COB是等腰直角三角形.
          證明:∵直線BC的解析式為:y2=-x+6,
          ∴B(0,6),
          ∵直線OC的解析式為:y1=x,
          ∴∠COB=45°,
          ∴OC==3,BC==3,
          ∴OC=BC,
          ∴∠OBC=∠COB=45°,
          ∴∠OCB=90°,
          ∴△COB是等腰直角三角形;

          (3)如圖,過C作CD⊥x軸于點D,
          則D(3,0),
          ①當0<x≤3時,此時直線m左側部分是△PQO,
          ∵P(x,0),
          ∴OP=x,
          而Q在直線y1=x上,
          ∴PQ=x,
          ∴s=x2(0<x≤3);
          ②當3<x<6時,此時直線m左側部分是四邊形OPQC,
          ∵P(x,0),
          ∴OP=x,
          ∴PB=OB-OP=6-x,
          而Q在直線y2=-x+6上,
          ∴PQ=-x+6,
          ∴S=S△BOC-S△PBQ=×CD×OB-×BP×PQ=×3×6-×(6-x)×(-x+6)=-x2+6x-9(3<x<6).
          分析:(1)由于C是直線OC、BC的交點,根據(jù)它們的解析式即可求出坐標,然后根據(jù)圖象和交點坐標可以求出當x取何值時y1>y2;
          (2)由直線OC的解析式為:y1=x,即可求得∠COB的度數(shù),由BC的函數(shù)關系式為y2=-x+6,即可求得點B的坐標,由兩點式,可求得OC與BC的長,則可證得△COB的形狀;
          (3)此小題有兩種情況:①當0<x≤3,此時直線m左側部分是△PQO,由于P(x,0)在OB上運動,所以PQ,OP都可以用x表示,所以s與x之間函數(shù)關系式即可求出;②當3<x<6,此時直線m左側部分是四邊形OPQC,可以先求出右邊的△PQB的面積,然后即可求出左邊的面積,而△PQO的面積可以和①一樣的方法求出.
          點評:此題考查了一次函數(shù)的交點問題、等腰直角三角形的判定以及面積問題.此題難度較大,注意掌握數(shù)形結合思想、分類討論思想與方程思想的應用.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          如圖,直線OC、BC的函數(shù)關系式分別是y1=x和y2=-2x+6,直線BC與x軸交于點B,直線BA與直線OC相精英家教網(wǎng)交于點A.
          (1)當x取何值時y1>y2?
          (2)當直線BA平分△BOC的面積時,求點A的坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,直線OC、BC的函數(shù)關系式分別是y1=x和y2=-2x+6,動點P(x,0)在OB上運動(0<x<3),過點P作直線m與x軸垂直.
          (1)求點C的坐標,并回答當x取何值時y1>y2?
          (2)設△COB中位于直線m左側部分的面積為s,求出s與x之間函數(shù)關系式.
          (3)當x為何值時,直線m平分△COB的面積?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,直線OC、BC的函數(shù)關系式分別為y=x和y=-2x+6,動點P(x,0)在OB上移動(0<x<3),過點P作直線l與x軸垂直.
          (1)求點C的坐標;
          (2)設△OBC中位于直線l左側部分的面積為s,寫出s與x之間的函數(shù)關系式;
          (3)在直角坐標系中畫出(2)中函數(shù)的圖象;
          (4)當x為何值時,直線l平分△OBC的面積?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,直線OC、BC的函數(shù)關系式分別是y1=x和y2=-2x+6,動點P(x,0)在OB上運動(0<x<3),過點P作直線m與x軸垂直.
          (1)求點C的坐標;
          (2)當x為何值時,直線m平分△COB的面積?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,直線OC、BC的函數(shù)關系式分別是y1=x和y2=-2x+6.
          (1)求點C的坐標.
          (2)當x取何值時y1>y2?
          (3)求△COB的面積.

          查看答案和解析>>

          同步練習冊答案