日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,平面直角坐標(biāo)系xOy中,矩形OABC的頂點A,C分別在x軸,y軸的正半軸上,且點C的坐標(biāo)是(0,1),點B的坐標(biāo)是(1),拋物線y=﹣x2+bx+c經(jīng)過點B和點C

          1)求拋物線y=﹣x2+bx+c的表達(dá)式:

          2)將△OAC沿直線AC折疊,點O的對稱點記為點D,請判斷:點D是否在拋物線上?并說明理由;

          3)點E為線段AC上的一個動點.

          若點P在拋物線上,其橫坐標(biāo)為m,當(dāng)PEACPE時.請直接寫出m的值;

          若點F為線段AB上一個動點,且CEAF,當(dāng)OE+OF的值最小時,請直接寫出點F的坐標(biāo).

          【答案】(1)y=﹣x2+x+l;(2)不在;(3)m2±2;

          【解析】

          1)將點B、C坐標(biāo)代入二次函數(shù)表達(dá)式,即可求解;

          2)不在,理由:利用△CDG∽△DHA,求得點D的坐標(biāo)是(,),即可求解;

          3設(shè)點P的坐標(biāo)為(m,﹣m2+m+1),點En,﹣n+1),利用EH|n+1+m2m1|1PH|mn|,即可求解;

          將矩形ABCO圍繞點C逆時針旋轉(zhuǎn)60°至矩形OABC,則圖示位置為圖象旋轉(zhuǎn)后的位置,當(dāng)B′、EO三點共線時,OE+OFOB′最小,即可求解.

          解:(1)將點B坐標(biāo)代入二次函數(shù)表達(dá)式得:1=﹣3+b+1,解得:b,

          故二次函數(shù)表達(dá)式為:y=﹣x2+x+l;

          2)不在,理由:

          過點Dx軸的平行線分別交AB的延長線和y軸于點GH,

          ∴∠CDA90°,∠GDC+HDA∠=90°,∠HDA+DAH90°,

          ∴∠DAH=∠GDC,

          ∴△CDG∽△DHA,

          ,

          解得:DG,HA,故:點D的坐標(biāo)是(,),

          代入拋物線表達(dá)式,則y所以點D不在拋物線上;

          3PEAC,∴∠PEH+HEA90°,∠HEA+EAO90°,

          ∴∠PEH=∠CAOα

          B的坐標(biāo)是(,1),tanABCtanα,即:∠ABC30°=α,

          PHPEsinαEH1,

          把點AC的表達(dá)式為:ykx+1,把點A坐標(biāo)代入并求解得:

          直線AC的表達(dá)式為:y=﹣x+1,

          設(shè)點P的坐標(biāo)為(m,﹣m2+m+1),點En,﹣n+1),

          EH|n+1+m2m1|1,

          PH|mn|,

          聯(lián)立①②并解得:m2±2;

          ∵∠ABC30°,∴△OOC為等邊三角形,

          將矩形ABCO圍繞點C逆時針旋轉(zhuǎn)60°至矩形OABC,則圖示位置為圖象旋轉(zhuǎn)后的位置,

          連接OF′、BE、OE,∵CEAFAF′,

          ∴四邊形OFBE為平行四邊形,

          OE+OFOE+BE,故:當(dāng)B′、EO三點共線時,OE+OFOB′最小,

          旋轉(zhuǎn)后點BO′與x軸垂直,則yBAB+AC+,同理xB,

          即點B′(,),

          則直線OB′的表達(dá)式為:yx,

          同理可得直線AC的表達(dá)式為:y=﹣x+1,

          以上兩式聯(lián)立并求解得:x,y

          即點E,),

          同理可得點

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知,內(nèi)接于,點是弧的中點,連接、;

          1)如圖1,若,求證:;

          2)如圖2,若平分,求證:;

          3)在(2)的條件下,若,,求的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】下列說法正確的是( )

          A. “任意畫一個三角形,其內(nèi)角和為”是隨機(jī)事件;

          B. 某種彩票的中獎率是,說明每買100張彩票,一定有1張中獎;

          C. “籃球隊員在罰球線上投籃一次,投中”為隨機(jī)事件;

          D. 投擲一枚質(zhì)地均勻的硬幣100次,正面向上的次數(shù)一定是50次.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在小山的東側(cè)A點有一個熱氣球,由于受風(fēng)的影響,以30米/分的速度沿與地面成75°角的方向飛行,25分鐘后到達(dá)C處,此時熱氣球上的人測得小山西側(cè)B點的俯角為30°,則小山東西兩側(cè)A,B兩點間的距離為(  )米.

          A. 750 B. 375 C. 375 D. 750

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】我們知道不等式的兩邊加(或減)同一個數(shù)(或式子),不等號的方向不變.不等式組是否也具有類似的性質(zhì)呢?請解答下列問題.

          1)完成下列填空:

          已知

          用“<”或“>”填空

          5+2_____3+1

          31_____52

          12_____4+1

          2)一般地,如果那么a+c_____b+d(用“<”或“>”填空).請你說明上述性質(zhì)的正確性.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】目前節(jié)能燈在城市已基本普及,今年山東省面向縣級及農(nóng)村地區(qū)推廣節(jié)能燈,為響應(yīng)號召,某商場計劃購進(jìn)甲、乙兩種節(jié)能燈共1200只,這兩種節(jié)能燈的進(jìn)價、售價如下表:

          進(jìn)價(/)

          售價(/)

          25

          30

          45

          60

          (1)如何進(jìn)貨,進(jìn)貨款恰好為46000元?

          (2)如何進(jìn)貨,商場銷售完節(jié)能燈時獲利最多且不超過進(jìn)貨價的30%,此時利潤為多少元?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】小方與小輝在玩軍棋游戲,他們定義了一種新的規(guī)則,用軍棋中的工兵、連長地雷比較大小,共有6個棋子,分別為1工兵,2連長,3地雷游戲規(guī)則如下:①游戲時,將棋反面朝上,兩人隨機(jī)各摸一個棋子進(jìn)行比賽,先摸者摸出的棋不放回;②工兵地雷,地雷連長連長工兵;③相同棋子不分勝負(fù).

          1)若小方先摸,則小方摸到排長的事件是 ;若小方先摸到了連長,小輝在剩余的5個棋子中隨機(jī)摸一個,則這一輪中小方勝小輝的概率為

          2)如果先拿走一個連長,在剩余的5個棋子中小方先摸一個棋子,然后小輝在剩余的4個棋子中隨機(jī)摸一個,求這一輪中小方獲勝的概率

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】8分)如圖,△ABC各頂點的坐標(biāo)分別是A﹣2,﹣4),B0﹣4),C1﹣1).

          1)在圖中畫出△ABC向左平移3個單位后的△A1B1C1;

          2)在圖中畫出△ABC繞原點O逆時針旋轉(zhuǎn)90°后的△A2B2C2

          3)在(2)的條件下,AC邊掃過的面積是

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,拋物線y=ax2+2x+c(a<0)與x軸交于點A和點B(點A在原點的左側(cè),點B在原點的右側(cè)),與y軸交于點C,OB=OC=3.

          (1)求該拋物線的函數(shù)解析式.

          (2)如圖1,連接BC,點D是直線BC上方拋物線上的點,連接OD,CD.ODBC于點F,當(dāng)SCOF:SCDF=3:2時,求點D的坐標(biāo).

          (3)如圖2,點E的坐標(biāo)為(0,),點P是拋物線上的點,連接EB,PB,PE形成的△PBE中,是否存在點P,使∠PBE或∠PEB等于2∠OBE?若存在,請直接寫出符合條件的點P的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案