日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖1,已知拋物線C經(jīng)過(guò)原點(diǎn),對(duì)稱軸與拋物線相交于第三象限的點(diǎn)M,與x軸相交于點(diǎn)N,且

          (1)求拋物線C的解析式;
          (2)將拋物線C繞原點(diǎn)O旋轉(zhuǎn)1800得到拋物線,拋物線與x軸的另一交點(diǎn)為A,B為拋物線上橫坐標(biāo)為2的點(diǎn)。
          ①若P為線段AB上一動(dòng)點(diǎn),PD⊥y軸于點(diǎn)D,求△APD面積的最大值;
          ②過(guò)線段OA上的兩點(diǎn)E、F分別作x軸的垂線,交折線O-B-A于E1、F1,再分別以線段EE1、FF1為邊作如圖2所示的等邊△AE1E2、等邊△AF1F2,點(diǎn)E以每秒1個(gè)長(zhǎng)度單位的速度從點(diǎn)O向點(diǎn)A運(yùn)動(dòng),點(diǎn)F以每秒1個(gè)長(zhǎng)度單位的速度從點(diǎn)A向點(diǎn)O運(yùn)動(dòng),當(dāng)△AE1E2有一邊與△AF1F2的某一邊在同一直線上時(shí),求時(shí)間t的值。

          解:(1)∵拋物線的對(duì)稱軸為,∴ON=3。
          ,∴NM=9!郙(-3,-9)。
          ∴設(shè)拋物線C的解析式為。
          ∵拋物線C經(jīng)過(guò)原點(diǎn),∴,即。
          ∴拋物線C的解析式為,即。
          (2)①∵拋物線由拋物線C繞原點(diǎn)O旋轉(zhuǎn)1800得到,
          ∴拋物線與拋物線C關(guān)于原點(diǎn)O對(duì)稱!鄴佄锞的頂點(diǎn)坐標(biāo)為(3,9)。
          ∴拋物線的解析式為,即。
          ∵令y=0,得x=0或x=6,∴A(6,0)。
          又∵B為拋物線上橫坐標(biāo)為2的點(diǎn),∴令x=2,得y=8!郆(2,8)。
          設(shè)直線AB的解析式為y=kx+b,
          ,解得:
          ∴直線AB的解析式為。
          ∵P為線段AB上一動(dòng)點(diǎn),∴設(shè)P。
          。
          APD面積的最大值為9。
          ②如圖,分別過(guò)E2、F2作x軸的垂線,垂足分別為G、H,

          易求直線OB:,由①直線AB:。
          當(dāng)時(shí),E1在OB上,F(xiàn)1在AB上,
          OE=t,EE1=4t,EG=,OG=,GE2=2t;
          OF=,F(xiàn)F1=2t,HF=,OH=,HF2= t。
          ∴E(t,0),E1(t,4t),E2,2t),F(xiàn)(6-t,0),F(xiàn)1,2t),F(xiàn)2,t)。
          i)若EE1與FF1在同一直線上,由t=6-t,t=3,不符合;
          ii)若EE2與F1F2在同一直線上,易求得EE2,將F1,2t)代入,得,解得;
          iii)若E1E2與FF2在同一直線上,易求得E1E2,將F(,0)代入,得。
          當(dāng)時(shí),E1、F1都在AB上,
          OE=t,EE1=,EG=,OG=,GE2=
          OF=,F(xiàn)F1=2t,HF=,OH=,HF2= t。
          ∴E(t,0),E1(t,),E2,),F(xiàn)(,0),F(xiàn)1,2t),F(xiàn)2,t)。
          i)若EE1與FF1在同一直線上,由t=6-t,t=3;
          ii)若EE2與F1F2在同一直線上,易求得EE2,將F1,2t)代入,得,解得,不符合;
          iii)E1E2與FF2已在時(shí)在同一直線上,故當(dāng)時(shí)E1E2與FF2不可能在同一直線上。
          當(dāng)時(shí),由上面討論的結(jié)果,△AE1E2的一邊與△AF1F2的某一邊不可能在同一直線上。
          綜上所述,當(dāng)△AE1E2有一邊與△AF1F2的某一邊在同一直線上時(shí),解析

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知二次函數(shù)圖象的頂點(diǎn)是(-1,2),且過(guò)點(diǎn)(0,).

          (1)求二次函數(shù)的表達(dá)式,并在圖中畫出它的圖象;
          (2)判斷點(diǎn)(2,)是否在該二次函數(shù)圖象上;并指出當(dāng)取何值時(shí),?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,拋物線與直線交于點(diǎn)A 、B,與y軸交于點(diǎn)C.

          (1)求點(diǎn)A、B的坐標(biāo);
          (2)若點(diǎn)P是直線x=1上一點(diǎn),是否存在△PAB是等腰三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,要設(shè)計(jì)一個(gè)矩形的花壇,花壇長(zhǎng)60 m,寬40 m,有兩條縱向甬道和一條橫向甬道,橫向甬道的兩側(cè)有兩個(gè)半圓環(huán)形甬道,半圓環(huán)形甬道的內(nèi)半圓的半徑為10 m,橫向甬道的寬度是其它各甬道寬度的2倍.設(shè)橫向甬道的寬為2x m.(π的值取3)

          (1)用含x的式子表示兩個(gè)半圓環(huán)形甬道的面積之和;
          (2)當(dāng)所有甬道的面積之和比矩形面積的多36 m2時(shí),求x的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖是我省某地一座拋物線形拱橋,橋拱在豎直平面內(nèi),與水平橋面相交于A,B兩點(diǎn),橋拱最高點(diǎn)C到AB的距離為9m,AB=36m,D,E為橋拱底部的兩點(diǎn),且DE∥AB,點(diǎn)E到直線AB的距離為7m,則DE的長(zhǎng)為   m.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,在平面直角坐標(biāo)系xOy中,拋物線的頂點(diǎn)為A,與y軸的交點(diǎn)為B,連結(jié)AB,AC⊥AB,交y軸于點(diǎn)C,延長(zhǎng)CA到點(diǎn)D,使AD=AC,連結(jié)BD.作AE∥x軸,DE∥y軸.

          (1)當(dāng)m=2時(shí),求點(diǎn)B的坐標(biāo);
          (2)求DE的長(zhǎng)?
          (3)①設(shè)點(diǎn)D的坐標(biāo)為(x,y),求y關(guān)于x的函數(shù)關(guān)系式?②過(guò)點(diǎn)D作AB的平行線,與第(3)①題確定的函數(shù)圖象的另一個(gè)交點(diǎn)為P,當(dāng)m為何值時(shí),以,A,B,D,P為頂點(diǎn)的四邊形是平行四邊形?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,拋物線與y軸交于點(diǎn)C(0,-4),與x軸交于點(diǎn)A,B,且B點(diǎn)的坐標(biāo)為(2,0)

          (1)求該拋物線的解析式;
          (2)若點(diǎn)P是AB上的一動(dòng)點(diǎn),過(guò)點(diǎn)P作PE∥AC,交BC于E,連接CP,求△PCE面積的最大值;
          (3)若點(diǎn)D為OA的中點(diǎn),點(diǎn)M是線段AC上一點(diǎn),且△OMD為等腰三角形,求M點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,已知拋物線的圖象與x軸的一個(gè)交點(diǎn)為B(5,0),另一個(gè)交點(diǎn)為A,且與y軸交于點(diǎn)C(0,5)。

          (1)求直線BC與拋物線的解析式;
          (2)若點(diǎn)M是拋物線在x軸下方圖象上的動(dòng)點(diǎn),過(guò)點(diǎn)M作MN∥y軸交直線BC于點(diǎn)N,求MN的最大值;
          (3)在(2)的條件下,MN取得最大值時(shí),若點(diǎn)P是拋物線在x軸下方圖象上任意一點(diǎn),以BC為邊作平行四邊形CBPQ,設(shè)平行四邊形CBPQ的面積為S1,△ABN的面積為S2,且S1=6S2,求點(diǎn)P的坐標(biāo)。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,已知拋物線經(jīng)過(guò)A(﹣2,0),B(﹣3,3)及原點(diǎn)O,頂點(diǎn)為C

          (1)求拋物線的函數(shù)解析式.
          (2)設(shè)點(diǎn)D在拋物線上,點(diǎn)E在拋物線的對(duì)稱軸上,且以AO為邊的四邊形AODE是平行四邊形,求點(diǎn)D的坐標(biāo).
          (3)P是拋物線上第一象限內(nèi)的動(dòng)點(diǎn),過(guò)點(diǎn)P作PM⊥x軸,垂足為M,是否存在點(diǎn)P,使得以P,M,A為頂點(diǎn)的三角形與△BOC相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>