日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】新華商場(chǎng)銷(xiāo)售某種冰箱,每臺(tái)進(jìn)價(jià)為2500元,銷(xiāo)售價(jià)為2900元,平均每天能售出8臺(tái);調(diào)查發(fā)現(xiàn),當(dāng)銷(xiāo)售價(jià)每降低50元,平均每天就能多售出4臺(tái).商場(chǎng)要想使這種冰箱的銷(xiāo)售利潤(rùn)平均每天達(dá)到5000元,每臺(tái)冰箱應(yīng)該降價(jià)多少元?若設(shè)每臺(tái)冰箱降價(jià)x元,根據(jù)題意可列方程( 。

          A. (2900-x)(8+4×)=5000 B. (400-x)(8+4×)=5000

          C. 4(2900-x)(8+)=5000 D. 4(400-x)(8+)=5000

          【答案】B

          【解析】

          銷(xiāo)售利潤(rùn)=一臺(tái)冰箱的利潤(rùn)×銷(xiāo)售冰箱數(shù)量,一臺(tái)冰箱的利潤(rùn)=售價(jià)進(jìn)價(jià),降低售價(jià)的同時(shí),銷(xiāo)售量就會(huì)提高,“一減一加”,根據(jù)每臺(tái)的盈利×銷(xiāo)售的件數(shù)=5000,即可列方程.

          設(shè)每臺(tái)冰箱的降價(jià)應(yīng)為元,依題意得:.

          故選.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某汽車(chē)專(zhuān)賣(mài)店經(jīng)銷(xiāo)某種型號(hào)的汽車(chē).已知該型號(hào)汽車(chē)的進(jìn)價(jià)為15萬(wàn)元/輛,經(jīng)銷(xiāo)一段時(shí)間后發(fā)現(xiàn):當(dāng)該型號(hào)汽車(chē)售價(jià)定為25萬(wàn)元/輛時(shí),平均每周售出8輛;售價(jià)每降低0.5萬(wàn)元,平均每周多售出1輛.

          1)當(dāng)售價(jià)為22萬(wàn)元/輛時(shí),求平均每周的銷(xiāo)售利潤(rùn).

          2)若該店計(jì)劃平均每周的銷(xiāo)售利潤(rùn)是90萬(wàn)元,為了盡快減少庫(kù)存,求每輛汽車(chē)的售價(jià).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】甲種污水處理器處理25噸的污水與乙種污水處理器處理35噸的污水所用的時(shí)間相同,已知乙種污水處理器每小時(shí)比甲種污水處理器多處理20噸的污水.

          1)分別求甲、乙兩種污水處理器的污水處理效率;

          2)若某廠每天同時(shí)開(kāi)甲、乙兩種污水處理器處理污水共4小時(shí),且甲、乙兩種污水處理器處理污水每噸需要的費(fèi)用分別30元和50元,問(wèn)該廠每個(gè)月(以30天計(jì))需要污水處理費(fèi)多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知拋物線(xiàn)的對(duì)稱(chēng)軸是x=-4,拋物線(xiàn)與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),O是坐標(biāo)原點(diǎn),且A,C的坐標(biāo)分別是(-2,0),(0,3).

          (1)求拋物線(xiàn)的解析式;

          (2)拋物線(xiàn)上有一點(diǎn)是P,滿(mǎn)足∠PBC=90,求P點(diǎn)的坐標(biāo);

          (3)y軸上是否存在點(diǎn)E使得△AOE與△PBC相似?若存在求出點(diǎn)E的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在等邊三角形ABC中,點(diǎn)DE分別在邊BC,AC上,DEAB,過(guò)點(diǎn)EEFDE,交BC的延長(zhǎng)線(xiàn)于點(diǎn)F

          1)求∠F的度數(shù);

          2)若CD4,求EF的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知:△ABC是三邊都不相等的三角形,點(diǎn)O和點(diǎn)P是這個(gè)三角形內(nèi)部?jī)牲c(diǎn).
          1)如圖①,如果點(diǎn)P是這個(gè)三角形三個(gè)內(nèi)角平分線(xiàn)的交點(diǎn),那么∠BPC和∠BAC有怎樣的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;
          2)如圖②,如果點(diǎn)O是這個(gè)三角形三邊垂直平分線(xiàn)的交點(diǎn),那么∠BOC和∠BAC有怎樣的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;
          3)如圖③,如果點(diǎn)P(三角形三個(gè)內(nèi)角平分線(xiàn)的交點(diǎn)),點(diǎn)O(三角形三邊垂直平分線(xiàn)的交點(diǎn))同時(shí)在不等邊△ABC的內(nèi)部,那么∠BPC和∠BOC有怎樣的數(shù)量關(guān)系?請(qǐng)直接回答.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖1,在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),長(zhǎng)方形OACB的頂點(diǎn)A、B分別在x軸與y軸上,已知OA=6,OB=10.點(diǎn)Dy軸上一點(diǎn),其坐標(biāo)為(0,2),點(diǎn)P從點(diǎn)A出發(fā)以每秒2個(gè)單位的速度沿線(xiàn)段AC﹣CB的方向運(yùn)動(dòng),當(dāng)點(diǎn)P與點(diǎn)B重合時(shí)停止運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒.

          (1)當(dāng)點(diǎn)P經(jīng)過(guò)點(diǎn)C時(shí),求直線(xiàn)DP的函數(shù)解析式;

          (2)①求△OPD的面積S關(guān)于t的函數(shù)解析式;

          ②如圖②,把長(zhǎng)方形沿著OP折疊,點(diǎn)B的對(duì)應(yīng)點(diǎn)B′恰好落在AC邊上,求點(diǎn)P的坐標(biāo).

          (3)點(diǎn)P在運(yùn)動(dòng)過(guò)程中是否存在使△BDP為等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,平分,且.

          1)在圖1中,當(dāng)時(shí),求證:;

          2)在圖2中,當(dāng)時(shí),求證:.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】解方程:

          (1)(x-5)2=16 (直接開(kāi)平方法) (2)x2+5x=0 (因式分解法)

          (3)x2-4x+1=0 (配方法) (4)x2+3x-4=0 (公式法)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案