日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,拋物線y1=-ax2-ax+1經(jīng)過(guò)點(diǎn)P(-
          1
          2
          ,
          9
          8
          ),且與拋物線y2=ax2-ax-1相交于A,B兩點(diǎn).
          (1)求a值;
          (2)設(shè)y1=-ax2-ax+1與x軸分別交于M,N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左邊),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(diǎn)(點(diǎn)E在點(diǎn)F的左邊),觀察M,N,E,F(xiàn)四點(diǎn)的坐標(biāo),寫出一條正確的結(jié)論,并通過(guò)計(jì)算說(shuō)明;
          (3)設(shè)A,B兩點(diǎn)的橫坐標(biāo)分別記為xA,xB,若在x軸上有一動(dòng)點(diǎn)Q(x,0),且xA≤x≤xB,過(guò)Q作一條垂直于x軸的直線,與兩條拋物線分別交于C,D兩點(diǎn),試問(wèn)當(dāng)x為何值時(shí),線段CD有最大值,其最大值為多少?
          (1)∵點(diǎn)P(-
          1
          2
          ,
          9
          8
          )
          在拋物
          y1=-ax2-ax+1上,
          -
          1
          4
          a+
          1
          2
          a+1=
          9
          8
          ,(2分)
          解得a=
          1
          2
          .(3分)

          (2)如圖,由(1)知a=
          1
          2

          ∴拋物線y1=-
          1
          2
          x2-
          1
          2
          x+1
          ,y2=
          1
          2
          x2-
          1
          2
          x-1
          .(5分)
          當(dāng)-
          1
          2
          x2-
          1
          2
          x+1=0
          時(shí),解得x1=-2,x2=1.
          ∵點(diǎn)M在點(diǎn)N的左邊,
          ∴xM=-2,xN=1.(6分)
          當(dāng)
          1
          2
          x2-
          1
          2
          x-1=0
          時(shí),解得x3=-1,x4=2.
          ∵點(diǎn)E在點(diǎn)F的左邊,
          ∴xE=-1,xF=2.(7分)
          ∵xM+xF=0,xN+xE=0,
          ∴點(diǎn)M與點(diǎn)F對(duì)稱,點(diǎn)N與點(diǎn)E對(duì)稱.(8分)

          (3)∵a=
          1
          2
          >0

          ∴拋物線y1開口向下,拋物線y2開口向上.(9分)
          根據(jù)題意,得CD=y1-y2=(-
          1
          2
          x2-
          1
          2
          x+1)-(
          1
          2
          x2-
          1
          2
          x-1)=-x2+2
          .(11分)
          ∵xA≤x≤xB,
          ∴當(dāng)x=0時(shí),CD有最大值2.(12分)
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知:如圖,平面直角坐標(biāo)系中,四邊形OABC是直角梯形,ABOC,OA=5,AB=10,OC=12,拋物線y=ax2+bx經(jīng)過(guò)點(diǎn)B、C.
          (1)求拋物線的函數(shù)表達(dá)式;
          (2)一動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AC以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)C運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿CO以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)O運(yùn)動(dòng),當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)C時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t為何值時(shí),△PQC是直角三角形?
          (3)點(diǎn)M在拋物線上,點(diǎn)N在拋物線對(duì)稱軸上,是否存在這樣的點(diǎn)M與點(diǎn)N,使以M、N、A、C為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)M與點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知:拋物線y=ax2+bx+4的對(duì)稱軸為x=-1,且與x軸相交于點(diǎn)A、B,與y軸相交于點(diǎn)C,其中點(diǎn)A的坐標(biāo)為(-3,0),
          (1)求該拋物線的解析式;
          (2)若該拋物線的頂點(diǎn)為D,求△ACD的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖在平面直角坐標(biāo)系中,將一塊等腰直角三角板ABC放在第二象限,且斜靠在兩坐標(biāo)軸上,且點(diǎn)A(0,2),點(diǎn)C(-1,0),如圖所示點(diǎn)B在拋物線y=ax2+ax-2上.
          (1)求點(diǎn)B的坐標(biāo);
          (2)求拋物線的解析式;
          (3)將三角板ABC繞頂點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)90°到達(dá)△AB′C′的位置,請(qǐng)寫出點(diǎn)B′坐標(biāo)______,點(diǎn)C′坐標(biāo)______;判斷點(diǎn)B′______,C′______(填“在”或“不”)在(2)中的拋物線上.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,在直角梯形OBCD中,OB=8,BC=1,CD=10.
          (1)求C,D兩點(diǎn)的坐標(biāo);
          (2)若線段OB上存在點(diǎn)P,使PD⊥PC,求過(guò)D,P,C三點(diǎn)的拋物線的表達(dá)式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,已知拋物線y=ax2+bx+c(a≠0)與x軸相交于點(diǎn)A(-2,0)和點(diǎn)B,與y軸相交于點(diǎn)C,頂點(diǎn)D(1,-
          9
          2

          (1)求拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
          (2)求四邊形ACDB的面積;
          (3)若平移(1)中的拋物線,使平移后的拋物線與坐標(biāo)軸僅有兩個(gè)交點(diǎn),請(qǐng)直接寫出一個(gè)平移后的拋物線的關(guān)系式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖所示,矩形ABCD的邊AB=3,AD=2,將此矩形置入直角坐標(biāo)系中,使AB在x軸上,點(diǎn)C在直線y=x-2上.
          (1)求矩形各頂點(diǎn)坐標(biāo);
          (2)若直線y=x-2與y軸交于點(diǎn)E,拋物線過(guò)E、A、B三點(diǎn),求拋物線的關(guān)系式;
          (3)判斷上述拋物線的頂點(diǎn)是否落在矩形ABCD內(nèi)部,并說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,矩形OABC的邊OC,OA分別與x軸,y軸重合,點(diǎn)B的坐標(biāo)是(
          3
          ,1),點(diǎn)D是AB邊上一個(gè)動(dòng)點(diǎn)(與點(diǎn)A不重合),沿OD將△OAD翻折,點(diǎn)A落在點(diǎn)P處.
          (1)若點(diǎn)P在一次函數(shù)y=2x-1的圖象上,求點(diǎn)P的坐標(biāo);
          (2)若點(diǎn)P在拋物線y=ax2圖象上,并滿足△PCB是等腰三角形,求該拋物線解析式;
          (3)當(dāng)線段OD與PC所在直線垂直時(shí),在PC所在直線上作出一點(diǎn)M,使DM+BM最小,并求出這個(gè)最小值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          一座隧道的截面由拋物線和長(zhǎng)方形構(gòu)成,長(zhǎng)方形的長(zhǎng)為8m,寬為2m,隧道最高點(diǎn)P位于AB的中央且距地面6m,建立如圖所示的坐標(biāo)系.
          (1)求拋物線的表達(dá)式;
          (2)一輛貨車高4m,寬2m,能否從該隧道內(nèi)通過(guò),為什么?

          查看答案和解析>>

          同步練習(xí)冊(cè)答案