日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在平面直角坐標(biāo)系中,已知點A(10,0),B(4,8),C(0,8),連接AB,BC,點Px軸上,從原點O出發(fā),以每秒1個單位長度的速度向點A運動,同時點M從點A出發(fā),以每秒2個單位長度的速度沿折線A﹣B﹣C向點C運動,其中一點到達(dá)終點時,另一點也隨之停止運動,設(shè)P,M兩點運動的時間為t秒.

          (1)求AB長;

          (2)設(shè)PAM的面積為S,當(dāng)0≤t≤5時,求St的函數(shù)關(guān)系式,并指出S取最大值時,點P的位置;

          (3)t為何值時,APM為直角三角形?

          【答案】(1)10;(2)中點處;(3).

          【解析】試題分析:(1)過點軸于點,利用勾股定理求出的長度;
          (2)先判斷出點上,然后表示出即可用三角形的面積公式即可;
          (3)為直角三角形時,由于沒有規(guī)定哪個頂點是直角頂點,所以分三種情況進(jìn)行討論;利用銳角三角函數(shù)或相似三角形的性質(zhì)即可.

          試題解析:

          (1)如圖1,過點BBDx軸于點D,

          A(10,0),B(4,8)C(0,8),

          AO=10,BD=8,AD=6,

          由勾股定理可求得:AB=10,

          (2)AB=10,

          10÷2=5,

          ∴點MAB上,

          MEOAE,

          ∴△AEM∽△ADB,

          t=5時,S取最大值,此時PA=10t=5,

          即:點POA的中點處.

          (3)由題意可知:

          當(dāng)點P是直角頂點時,

          PMAP

          PA=10t,

          ,MAB,如圖2,

          此時AM=2t

          ,MBC,如圖3,

          CM=142t,OP=t

          OP=CM,

          t=142t

          當(dāng)點A是直角頂點時,

          此時,MAP不可能為 此情況不符合題意;

          當(dāng)點M是直角頂點時,

          ,MAB,如圖4,

          此時,AM=2t,AP=10t

          ,MBC,如圖5,

          過點MMEx軸于點E,

          此時,CM=142t,OP=t,

          ME=8,PE=CMOP=143t,

          EA=10(142t)=2t4,

          ∴∠PME=MAP,

          ∴△PME∽△MAE

          64=(143t)(2t4),

          故此情況不存在;

          綜上所述,t=

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】平面上,RtABC與直徑為CE的半圓O如圖1擺放,∠B=90°,AC=2CE=m,BC=n,半圓OBC邊于點D,將半圓O繞點C按逆時針方向旋轉(zhuǎn),點D隨半圓O旋轉(zhuǎn)且∠ECD始終等于∠ACB,旋轉(zhuǎn)角記為α(0°α180°)

          (1)當(dāng)α=0°時,連接DE,則∠CDE=   °,CD=   

          (2)試判斷:旋轉(zhuǎn)過程中的大小有無變化?請僅就圖2的情形給出證明;

          (3)若m=10,n=8,當(dāng)α=ACB時,求線段BD的長;

          (4)若m=6,n=4,當(dāng)半圓O旋轉(zhuǎn)至與△ABC的邊相切時,直接寫出線段BD的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知ABC為等邊三角形,點D,E分別在邊ABAC上,AD=AE,連接DC,點M,PN分別為DE,DCBC的中點.

          1)觀察猜想

          在如圖中,線段PMPN的數(shù)量關(guān)系是______,∠MPN的度數(shù)是______;

          2)探究證明

          ADE繞點A逆時針方向旋轉(zhuǎn)到如圖的位置,

          ①判斷PMN的形狀,并說明理由;

          ②求∠MPN的度數(shù);

          3)拓展延伸

          ABC為直角三角形,∠BAC=90°,AB=AC=12,點DE分別在邊AB,AC上,AD=AE=4,連接DC,點MP,N分別為DE,DC,BC的中點.把ADE繞點A在平面內(nèi)自由旋轉(zhuǎn),如圖.

          PMN的是______三角形.

          ②直接利用①中的結(jié)論,求PMN面積的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在RtABC中,∠C90°,將ABC繞點C順時針旋轉(zhuǎn)90°得到A′B′CM、M′分別是AB、A′B′的中點,若AC8,BC6,則線段MM′的長為____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:如圖,在菱形ABCD中,對角線ACBD相交于點O,DE∥AC,AE∥BD

          (1)、求證:四邊形AODE是矩形;(2)、若AB6,∠BCD120°,求四邊形AODE的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知直線l1l2l3l4,相鄰兩條平行直線間的距離都是1.如果正方形ABCD的四個頂點分別在四條直線上,那么sinα=_.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知直線AB, AB 之間的距離為 2 C、D 是直線兩個動點(點 C D 點的左側(cè)),且 AB=CD=5.連接 AC、BC、BD,將ABC 沿 BC 折疊得到A′BC.若以 A′、C、BD 為頂點的四邊形為矩形,則此矩形相鄰兩邊之和為____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,直線的解析表達(dá)式為:y=-3x+3,且與x軸交于點D,直線經(jīng)過點A,B,直線,交于點C.

          (1)求點D的坐標(biāo);

          (2)求直線的解析表達(dá)式;

          (3)求ADC的面積;

          (4)在直線上存在異于點C的另一點P,使得ADP的面積是ADC面積的2倍,請直接寫出點P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】矩形OABC在平面直角坐標(biāo)系中的位置如圖所示,點B的坐標(biāo)為(3,4),DOA的中點,點EAB上,當(dāng)△CDE的周長最小時,點E的坐標(biāo)為_____

          查看答案和解析>>

          同步練習(xí)冊答案