日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在△ABC中,∠ACB=90°,DBC的中點(diǎn),DE⊥BC,CE∥AD,若AC=2,∠ADC=30°,下列說法:四邊形ACED是平行四邊形,△BCE是等腰三角形,四邊形ACEB的周長是10+2,④四邊形ACEB的面積是16.

          正確的個(gè)數(shù)是 ( )

          A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

          【答案】B

          【解析】

          證明ACDE,再由條件CEAD可證明四邊形ACED是平行四邊形;根據(jù)線段的垂直平分線證明AE=EB可得BCE是等腰三角形;首先利用三角函數(shù)計(jì)算出AD=4,CD=2,再算出AB長可得四邊形ACEB的周長是10+2,利用ACBCBE的面積和可得四邊形ACEB的面積.

          ①∵∠ACB=90°,DEBC,

          ∴∠ACD=CDE=90°,

          ACDE,

          CEAD,

          ∴四邊形ACED是平行四邊形,

          所以①正確;

          ②∵DBC的中點(diǎn),DEBC,

          EC=EB,

          ∴△BCE是等腰三角形,

          所以②正確;

          ③∵AC=2,ADC=30°,

          AD=4,CD=2,

          ∵四邊形ACED是平行四邊形,

          CE=AD=4,

          CE=EB,

          EB=4,DB=2,

          CB=4,

          AB=

          ∴四邊形ACEB的周長是10+2;

          所以③正確;

          ④四邊形ACEB的面積: ×2×4+×4×2=8,

          所以④錯(cuò)誤,

          故選:C.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】今年9月,莉莉進(jìn)入八中初一,在準(zhǔn)備開學(xué)用品時(shí),她決定購買若干個(gè)某款筆記本,甲、乙兩家文具店都有足夠數(shù)量的該款筆記本,這兩家文具店該款筆記本標(biāo)價(jià)都是20/個(gè).甲文具店的銷售方案是:購買該筆記本的數(shù)量不超過5個(gè)時(shí),原價(jià)銷售;購買該筆記本超過5個(gè)時(shí),從第6個(gè)開始按標(biāo)價(jià)的八折出售:乙文具店的銷售方案是:不管購買多少個(gè)該款筆記本,一律按標(biāo)價(jià)的九折出售.

          (1)若設(shè)莉莉要購買xx>5)個(gè)該款筆記本,請用含x的代數(shù)式分別表示莉莉到甲文具店和乙文具店購買全部該款筆記本所需的費(fèi)用;

          (2)在(1)的條件下,莉莉購買多少個(gè)筆記本時(shí),到乙文具店購買全部筆記本所需的費(fèi)用與到甲文具店購買全部筆記本所需的費(fèi)用相同?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某家電專賣店銷售每臺(tái)進(jìn)價(jià)分別200元、160元的A,B兩種型號(hào)的電風(fēng)扇,下表是近兩周的銷售情況

          銷售時(shí)段

          銷售數(shù)量

          銷售收入

          A 種型號(hào)

          B種型號(hào)

          第一周

          3臺(tái)

          4臺(tái)

          1550 元

          第二周

          4臺(tái)

          8臺(tái)

          2600 元

          (進(jìn)價(jià)、售價(jià)均保持不變,利銷=銷售收入-進(jìn)貨成本)

          (1)求A,B兩種型號(hào)的電風(fēng)扇的銷售單價(jià);

          (2)若專賣店準(zhǔn)備用不多于3560元的金額再采購這兩種型號(hào)的電風(fēng)扇共20臺(tái),且采購A型電風(fēng)扇的數(shù)量不少于8臺(tái).求專賣店有哪幾種采購方案?

          (3)在(2)的條件下.如果采購的電風(fēng)扇都能銷售完,請直接寫出哪種采購方案專賣店所獲利潤最大?最大利潤是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知雙曲線y= (k<0)經(jīng)過直角三角形OAB斜邊OA的中點(diǎn)D,且與直角邊AB相交于點(diǎn)C.若點(diǎn)A的坐標(biāo)為(﹣8,6),則△AOC的面積為

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】分類討論是一種非常重要的數(shù)學(xué)方法,如果一道題提供的已知條件中包含幾種情況,我們可以分情況討論來求解.例如:若|x|=2,|y|=3求x+y的值.

          情況若x=2,y=3時(shí),x+y=5

          情況若x=2,y=﹣3時(shí),x+y=﹣1

          情況若x=﹣2,y=3時(shí),x+y=1

          情況若x=﹣2,y=﹣3時(shí),x+y=﹣5

          所以,x+y的值為1,﹣1,5,﹣5.

          幾何的學(xué)習(xí)過程中也有類似的情況:

          問題(1):已知點(diǎn)A,B,C在一條直線上,若AB=8,BC=3,則AC長為多少?

          通過分析我們發(fā)現(xiàn),滿足題意的情況有兩種

          情況當(dāng)點(diǎn)C在點(diǎn)B的右側(cè)時(shí),如圖1,此時(shí),AC=   

          情況當(dāng)點(diǎn)C在點(diǎn)B的左側(cè)時(shí),如圖2,此時(shí),AC=   

          通過以上問題,我們發(fā)現(xiàn),借助畫圖可以幫助我們更好的進(jìn)行分類.

          問題(2):如圖3,數(shù)軸上點(diǎn)A和點(diǎn)B表示的數(shù)分別是﹣1和2,點(diǎn)C是數(shù)軸上一點(diǎn),且BC=2AB,則點(diǎn)C表示的數(shù)是多少?

          仿照問題1,畫出圖形,結(jié)合圖形寫出分類方法和結(jié)果.

          問題(3):點(diǎn)O是直線AB上一點(diǎn),以O(shè)為端點(diǎn)作射線OC、OD,使AOC=60°,OCOD,求BOD的度數(shù).畫出圖形,直接寫出結(jié)果.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】ab是新規(guī)定的一種運(yùn)算法則:ab=a2+ab,例如3(﹣2)=32+3×(﹣2)=3.

          (1)求(﹣3)5的值;

          (2)若(﹣2)x=6,求x的值;

          (3)若3(2x)=﹣4+x,求x的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(本小題滿分12分)

          直線y=x+6和x軸,y軸分別交于點(diǎn)E,F(xiàn),點(diǎn)A是線段EF上一動(dòng)點(diǎn)(不與點(diǎn)E重合),過點(diǎn)A作x軸垂線,垂足是點(diǎn)B,以AB為邊向右作長方形ABCD,AB:BC=3:4.

          (1)當(dāng)點(diǎn)A與點(diǎn)F重合時(shí)(圖1),求證:四邊形ADBE是平行四邊形,并求直線DE的表達(dá)式;

          (2)當(dāng)點(diǎn)A不與點(diǎn)F重合時(shí)(圖2),四邊形ADBE仍然是平行四邊形?說明理由,此時(shí)你還能求出直線DE的表達(dá)式嗎?若能,請你出來.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知△ABC的周長是20,三邊分別為a,b,c.

          (1)若b是最大邊,求b的取值范圍;

          (2)若△ABC是三邊均不相等的三角形,b是最大邊,c是最小邊,且b=3c,a,b,c均為整數(shù),求△ABC的三邊長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,△ABC中,∠C=90°,∠A=30°

          1)用尺規(guī)作圖作AB邊上的中垂線DE,交AC于點(diǎn)D,交AB于點(diǎn)E.(保留作圖痕跡,不要求寫作法和證明);

          2)連接BD,求證:BD平分∠CBA

          查看答案和解析>>

          同步練習(xí)冊答案