日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知:在梯形ABCD中,CD∥AB,AD=DC=BC=2,AB=4.點(diǎn)M從A開始,以每秒1個(gè)單位的速度向點(diǎn)B運(yùn)動(dòng);點(diǎn)N從點(diǎn)C出發(fā),沿C→D→A方向,以每秒1個(gè)單位的速度向點(diǎn)A運(yùn)動(dòng),若M、N同時(shí)出發(fā),其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也停止運(yùn)動(dòng).運(yùn)動(dòng)時(shí)間為t秒,過點(diǎn)N作NQ⊥CD交AC于點(diǎn)Q.
          (1)設(shè)△AMQ的面積為S,求S與t的函數(shù)關(guān)系式,并寫出t的取值范圍.
          (2)在梯形ABCD的對稱軸上是否存在點(diǎn)P,使△PAD為直角三角形?若存在,求點(diǎn)P到AB的距離;若不存在,說明理由.
          (3)在點(diǎn)M、N運(yùn)動(dòng)過程中,是否存在t值,使△AMQ為等腰三角形?若存在,求出t值;若不存在,說明理由.
          分析:(1)求出t的臨界點(diǎn)t=2,分別求出當(dāng)0<t≤2時(shí)和2≤t<4時(shí),S與t的函數(shù)關(guān)系式即可,
          (2)作梯形對稱軸交CD于K,交AB于L,分3種情況進(jìn)行討論,①取AD的中點(diǎn)G,②以D為直角頂點(diǎn),③以A為直角頂點(diǎn),
          (3)當(dāng)0<t≤2時(shí),若△AMQ為等腰三角形,則MA=MQ或者AQ=AM,分別求出t的值,然后判斷t是否符合題意.
          解答:解:(1)當(dāng)0<t≤2時(shí),
          如圖:過點(diǎn)Q作QF⊥AB于F,過點(diǎn)C作CE⊥AB于E,
          ∵AB∥CD,
          ∴QF⊥CD,
          ∵NQ⊥CD,
          ∴N,Q,F(xiàn)共線,
          ∴△CQN∽△AFQ,
          CN
          AF
          =
          NQ
          QF

          ∵CN=t,AF=AE-CN=3-t,
          ∵NF=
          3
          ,
          ∴QF=
          3
          -
          3
          3
          t,
          ∴S=
          1
          2
          •t•(
          3
          -
          3
          3
          t),
          ∴S=-
          3
          6
          t2+
          3
          2
          t,
          當(dāng)2≤t<4時(shí),
          如圖:△FQC∽△PQA,
          ∵DN=t-2,
          ∴FD=DN•cos∠FDN=DN•cos60°=
          1
          2
          (t-2),
          ∴FC=CD+FD=2+
          1
          2
          (t-2)=
          1
          2
          t+1,
          ∴FQ=FC•tan∠FCQ=FC•tan30°=(
          1
          2
          t+1)•
          3
          3
          =
          3
          6
          (t+2),
          ∴PQ=PF-FQ=
          3
          -
          3
          6
          (t+2),
          可得QP=
          3
          -
          3
          6
          (t+2),
          S=
          1
          2
          •t•[
          3
          -
          3
          6
          (t+2)],
          ∴S=-
          3
          12
          t2+
          3
          3
          t;

          (2)作梯形對稱軸交CD于K,交AB于L,
          情況一:取AD的中點(diǎn)G,GD=1,
          過G作GH⊥對稱軸于H,GH=1.5,
          ∵1.5>1,
          ∴以P為直角頂點(diǎn)的Rt△PAD不存在,
          情況二:以D為直角頂點(diǎn):KP1=
          3
          3
          ,
          ∴P1L=
          2
          3
          3
          ,
          況三:以A為直角頂點(diǎn),LP2=
          2
          3
          3

          綜上:P到AB的距離為
          2
          3
          3
          時(shí),△PAD為Rt△,

          (3)0<t≤2時(shí),若MA=MQ,
          則:
          3
          2
          t=
          3
          -
          3
          3
          2
          t,
          ∴t=
          6
          5
          ,
          若AQ=AM,則t=2
          3
          -
          2
          3
          3
          t,
          解得t=12-6
          3
          ,
          若QA=QM,則∠QMA=30°
          而0<t≤2時(shí),∠QMA>90°,
          ∴QA=QM不存在;
          2≤t<4(圖中)
          若QA=QM,AP:AD=
          3
          :2,
          ∴t=2,
          若AQ=AM,2
          3
          -
          3
          3
          (t+2)=t,
          ∴t=2
          3
          -2,
          ∵2
          3
          -2<2,
          ∴此情況不存在若MA=MQ,則∠AQM=30°,而∠AQM>60°不存在.
          綜上:t=
          6
          5
          ,12-6
          3
          ,2時(shí),△AMQ是等腰三角形.
          點(diǎn)評:本題主要考查等腰梯形的性質(zhì)的知識點(diǎn),此題綜合性很強(qiáng),把圖形的變換放在梯形的背景中,利用等腰梯形的性質(zhì)結(jié)合已知條件探究圖形的變換,根據(jù)變換的圖形的性質(zhì)求出運(yùn)動(dòng)時(shí)間.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知:在梯形ABCD中,AD∥BC,點(diǎn)E在AB上,點(diǎn)F在DC上,且AD=a,BC=b.
          (1)如果點(diǎn)E、F分別為AB、DC的中點(diǎn),如圖.求證:EF∥BC,且EF=
          a+b
          2
          ;
          (2)如果
          AE
          EB
          =
          DF
          EC
          =
          m
          n
          ,如圖,判斷EF和BC是否平等,并用a、b、m、n的代數(shù)式表示EF.請證明你的結(jié)論.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:在梯形ABCD中,AD∥BC,AB=DC,E,F(xiàn)分別是AB和BC邊上的點(diǎn).
          (1)如圖①,以EF為對稱軸翻折梯形ABCD,使點(diǎn)B與點(diǎn)D重合,且DF⊥BC.若AD=4,BC=8,求梯形ABCD的面積S梯形ABCD的值;
          (2)如圖②,連接EF并延長與DC的延長線交于點(diǎn)G,如果FG=k•EF(k為正數(shù)),試猜想BE與CG有何數(shù)量關(guān)系寫出你的結(jié)論并證明之.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知:在梯形ABCD中,AD∥BC,AD=3,BC=5,點(diǎn)E在AB上,且AE:EB=2:3,過點(diǎn)E作EF∥BC交CD于F,求EF的長?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:在梯形ABCD中,AD∥BC,AB=DC=5,AD=3.5,sinB=
          45
          ,點(diǎn)E是AB邊上一點(diǎn),BE=3,點(diǎn)P是BC邊上的一動(dòng)點(diǎn),連接EP,作∠EPF,使得∠EPF=∠B,射線PF與AD邊交于點(diǎn)F,與CD的延長線交于點(diǎn)G,設(shè)BP=x,DF=y.
          (1)求BC的長;
          (2)試求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;
          (3)連接EF,如果△PEF是等腰三角形,試求BP的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知,在梯形ABCD中,AD∥BC,∠ABC=90°,BC=2AD,點(diǎn)E、F分別是BC和DC的中點(diǎn),連接AE、EF和BD,AE和BD相交于點(diǎn)G.
          (1)求證:四邊形AECD是平行四邊形;
          (2)求證:四邊形EFDG是菱形.

          查看答案和解析>>

          同步練習(xí)冊答案