日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,C是半圓O上一個動點,AB為半圓的直徑,D是弧BC的中點,過點D作半圓O的切線DEAC的延長線于點E

          1)求證:AEDE

          2已知CE=2,DE=4,則AB=   ;

          連接OC,DC,當BAC=   度時,四邊形OBDC為菱形.

          【答案】1)見解析;(2)①10;②60.

          【解析】

          1)連接OD,利用切線的性質(zhì)和三角形內(nèi)角和解答即可;

          2)①連接OC、CDOD,并過點DAB邊上的垂線,垂足為H,利用全等三角形的判定和性質(zhì)以及勾股定理解答即可;

          ②利用菱形的性質(zhì)解答即可.

          1)連接OD

          D是弧BC的中點,∴∠EAD=DAB

          OA=OD,∴∠DAB=ADO

          ∵∠DAB+B=90°,∠ADO+ADE=90°,∴∠EDA=B,∴∠EAD+EDA=90°,∴∠AED=90°,∴AEDE;

          2)①如圖,連接OC、CDOD,并過點DAB邊上的垂線,垂足為H

          ∵∠AED=AHD=90°,∠EAD=DAH,AD=AD,∴△AED≌△AHDAAS),∴DE=DH=4

          D的中點,∴CD=BD

          ∵∠CED=BHD=90°,CD=BD,DE=DH,∴RtCEDRtBHDHL),∴CE=HB=2

          RtOHD中,設(shè)OD=r,則OH=r2,由勾股定理得:OD2OH2=DH2,即r2﹣(r22=42,解得:r=5,∴AB=2r=10

          ②連接OC,DC,當∠BAC=60度時,四邊形OBDC為菱形,理由如下:

          ∵∠BAC=60°,OA=OC,∴△ACO是等邊三角形,∴∠DAB=30°,∴∠B=60°,∴OB=OD=DB,∴OC=OB=BD=CD,∴四邊形OBDC是菱形.

          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          【題目】某文具店銷售甲、乙兩種圓規(guī),當銷售5只甲種、1只乙種圓規(guī),可獲利潤25元,銷售6只甲種、3只乙種圓規(guī),可獲利潤39元.

          1問該文具店銷售甲、乙兩種圓規(guī),每只的利潤分別是多少元?

          21中,文具店共銷售甲、乙兩種圓規(guī)50只,其中甲種圓規(guī)為a只,求文具店所獲得利潤Pa的函數(shù)關(guān)系式,并求當a≥30P的最大值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,點是線段上一點,,以點為圓心,的長為半徑作⊙,過點的垂線交⊙,兩點,點在線段的延長線上,連接交⊙于點,以為邊作

          1)求證:是⊙的切線;

          2)若,求四邊形與⊙重疊部分的面積;

          3)若,,連接,求的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在菱形ABCD中,∠B60°,AB2,M為邊AB的中點,N為邊BC上一動點(不與點B重合),將△BMN沿直線MN折疊,使點B落在點E處,連接DE、CE,當△CDE為等腰三角形時,BN的長為_____

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖1所示,拋物線軸交于點兩點,與軸交于點,直線經(jīng)過點,與拋物線另一個交點為,點是拋物線上的一個動點,過點作軸于點,交直線于點

          1)求拋物線的解析式

          2)當點在直線上方,且是以為腰的等腰三角形時,求的坐標

          3)如圖2所示,若點為對稱軸右側(cè)拋物線上一點,連接,以為直角頂點,線段為較長直角邊,構(gòu)造兩直角邊比為,是否存在點,使點恰好落在直線上?若存在,請直接寫出相應(yīng)點的橫坐標;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,已知拋物線y=ax2+bx+ca≠0)的對稱軸是,且經(jīng)過A(﹣4,0),C0,2)兩點,直線ly=kx+tk≠0)經(jīng)過A,C

          1)求拋物線和直線l的解析式;

          2)點P是直線AC上方的拋物線上一個動點,過點PPDx軸于點D,交AC于點E,過點PPFAC,垂足為F,當PEFAED時,求出點P的坐標;

          3)在拋物線的對稱軸上是否存在點Q,使ACQ為等腰三角形?若存在,直接寫出所有滿足條件的Q點的坐標;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在矩形ABCD中,∠ADC的平分線與AB交于E,點FDE的延長線上,∠BFE=90°,連接AF、CF,CFAB交于G.有以下結(jié)論:

          ①AE=BC

          ②AF=CF

          ③BF2=FGFC

          ④EGAE=BGAB

          其中正確的個數(shù)是(  )

          A. 1 B. 2 C. 3 D. 4

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,四邊形ABCD是正方形,AC、BD交于點O,點P、Q分別是AB、BD上的動點,點P的運動路徑是,點Q的運動路徑是BD,兩點的運動速度相同并且同時結(jié)束.若點P的行程為x,的面積為y,則y關(guān)于x的函數(shù)圖象大致為(

          A.B.C.D.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在中,,點,分別在,上,且,以為圓心,長為半徑作圓,經(jīng)過點,與,分別交于點,

          1)求證:的切線;

          2)若,,求的半徑;

          3)在(2)的條件下,若的內(nèi)切圓圓心為,直接寫出的長.

          查看答案和解析>>

          同步練習冊答案