日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 學(xué)習(xí)過(guò)三角函數(shù),我們知道在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值相互唯一確定,因此邊長(zhǎng)與角的大小之間可以相互轉(zhuǎn)化.
          類(lèi)似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)sad A=.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的.
          根據(jù)上述對(duì)角的正對(duì)定義,解下列問(wèn)題:
          (1)sad60°的值為( )A.  B.1  C. D.2
          (2)對(duì)于0°<A<180°,∠A的正對(duì)值sadA的取值范圍是______.
          (3)已知sinα=,其中α為銳角,試求sadα的值.

          【答案】分析:(1)根據(jù)等腰三角形的性質(zhì),求出底角的度數(shù),判斷出三角形為等邊三角形,再根據(jù)正對(duì)的定義解答;
          (2)求出0度和180度時(shí)等腰三角形底和腰的比即可;
          (3)作出直角△ABC,構(gòu)造等腰三角形ACD,根據(jù)正對(duì)的定義解答.
          解答:解:(1)根據(jù)正對(duì)定義,
          當(dāng)頂角為60°時(shí),等腰三角形底角為60°,
          則三角形為等邊三角形,
          則sad60°==1.
          故選B.

          (2)當(dāng)∠A接近0°時(shí),sadα接近0,
          當(dāng)∠A接近180°時(shí),等腰三角形的底接近于腰的二倍,故sadα接近2.
          于是sadA的取值范圍是0<sadA<2.
          故答案為0<sadA<2.

          (3)如圖,在△ABC中,∠ACB=90°,sin∠A=
          在A(yíng)B上取點(diǎn)D,使AD=AC,
          作DH⊥AC,H為垂足,令BC=3k,AB=5k,
           則AD=AC==4k,
          又∵在△ADH中,∠AHD=90°,sin∠A=
          ∴DH=ADsin∠A=k,AH==k.
          則在△CDH中,CH=AC-AH=k,CD==k.
          于是在△ACD中,AD=AC=4k,CD=k.
          由正對(duì)的定義可得:sadA==,即sadα=
          點(diǎn)評(píng):此題是一道新定義的題目,考查了正對(duì)這一新內(nèi)容,要熟悉三角函數(shù)的定義,可進(jìn)行類(lèi)比解答.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)學(xué)習(xí)過(guò)三角函數(shù),我們知道在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值相互唯一確定,因此邊長(zhǎng)與角的大小之間可以相互轉(zhuǎn)化.
          類(lèi)似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)sad A=
          底邊
          =
          BC
          AB
          .容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的.
          根據(jù)上述對(duì)角的正對(duì)定義,解下列問(wèn)題:
          (1)sad60°的值為(  )A.
          1
          2
            B.1  C.
          3
          2
          D.2
          (2)對(duì)于0°<A<180°,∠A的正對(duì)值sadA的取值范圍是
           

          (3)已知sinα=
          3
          5
          ,其中α為銳角,試求sadα的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          學(xué)習(xí)過(guò)三角函數(shù),我們知道在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值相互唯一確定,因此邊長(zhǎng)與角的大小之間可以相互轉(zhuǎn)化.類(lèi)似的,也可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)sad A=
          1
          2
          .容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的.
          根據(jù)上述對(duì)角的正對(duì)定義,解下列問(wèn)題:
          (1)填空:sad60°=
          1
          1
          ,sad90°=
          2
          2
          ,sad120°=
          3
          3
          ;
          (2)對(duì)于0°<A<180°,∠A的正對(duì)值sadA的取值范圍是
          0<sadA<2
          0<sadA<2
          ;
          (3)如圖,已知sinA=
          3
          5
          ,其中A為銳角,試求sadA的值;
          (4)設(shè)sinA=k,請(qǐng)直接用k的代數(shù)式表示sadA的值為
          2-2
          1-k2
          2-2
          1-k2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (本小題滿(mǎn)分10分)
          學(xué)習(xí)過(guò)三角函數(shù),我們知道在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值相互唯一確定,因此邊長(zhǎng)與角的大小之間可以相互轉(zhuǎn)化.
          類(lèi)似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)sad A=.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的.
          根據(jù)上述對(duì)角的正對(duì)定義,解下列問(wèn)題:

          (1)sad 的值為(  )
          A.B.1C.D.2
          (2)對(duì)于,∠A的正對(duì)值sad A的取值范圍是        .
          (3)已知,其中為銳角,試求sad的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2012屆浙江天臺(tái)中片教研區(qū)九年級(jí)第四次模擬考試數(shù)學(xué)試卷(帶解析) 題型:解答題

          學(xué)習(xí)過(guò)三角函數(shù),我們知道在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值相互唯一確定,因此邊長(zhǎng)與角的大小之間可以相互轉(zhuǎn)化.類(lèi)似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA ,這時(shí)sadA=.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的.  根據(jù)上述關(guān)于角的正對(duì)定義,解決下列問(wèn)題:

          【小題1】sad的值為(   ▲ )

          A.B.1 C.D.2
          【小題2】對(duì)于,∠A的正對(duì)值sadA的取值范圍是(  ▲   )
          A.B.C.
          D.
          【小題3】已知,如圖,在△ABC中,∠ACB為直角,,AB=25試求sadA的值

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2011年南京市六合區(qū)中考數(shù)學(xué)一模試卷 題型:解答題

          (本小題滿(mǎn)分10分)

              學(xué)習(xí)過(guò)三角函數(shù),我們知道在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值相互唯一確定,因此邊長(zhǎng)與角的大小之間可以相互轉(zhuǎn)化.

          類(lèi)似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)sad A=.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的.

          根據(jù)上述對(duì)角的正對(duì)定義,解下列問(wèn)題:

          (1)sad 的值為(   )A.       B. 1  C.      D. 2

           

          (2)對(duì)于,∠A的正對(duì)值sad A的取值范圍是         .

          (3)已知,其中為銳角,試求sad的值.

           

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案