日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 某公園有一圓弧形的拱橋,如圖已知拱橋所在的圓的半徑為10米,拱橋頂到水面距離米.

          (1)求水面寬度的大;
          (2)當(dāng)水面上升到時,從點測得橋頂的仰角為,若=3,求水面上升的高度.
          (1)16(2)2
          解:(1)設(shè)拱橋所在圓的圓心為,由題意可知,點的延長線上,
          聯(lián)結(jié),
          ,
                                                                (1分)
          中,
                                                                     (2分)
          ,是半徑, 
                                                             (2分)
          即水面寬度的長為米.
          (2)設(shè)相交于點,聯(lián)結(jié), 

          ,
          ,                                            (1分)
          中,, 
                                                                   (1分)
          設(shè)水面上升的高度為米,即,則

          中,,
          , 化簡得
          解得(舍去),                                            (2分)
          答:水面上升的高度為2米
          (1)設(shè)拱橋所在圓的圓心為O,由題意可知,點O在DC的延長線上,連接OA,在Rt△ADO中利用勾股定理求出AD的長,再由垂徑定理求出AB=2AC即可得出答案;
          (2)設(shè)OD與EF相交于點G,連接OE,由EF∥AB,OD⊥AB,可知OD⊥EF,∠EGC=∠EGO=90°,在Rt△EGC中,由cotα="EG/CG" =3,可知EG=3CG,設(shè)水面上升的高度為x米,即DG=x,則CG=4-x,則EG=12-3x,在Rt△EGO中,利用勾股定理即可求出x的值,進(jìn)而得出結(jié)論.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在平面直角坐標(biāo)系中,四邊形OABC是矩形,OA = 6,AB = 4,直線y =" -" x +3與坐標(biāo)軸交于D、E。設(shè)M是AB的中點,P是線段DE上的動點.

          (1)求M、D兩點的坐標(biāo);
          (2)當(dāng)P在什么位置時,PA = PB?求出此時P點的坐標(biāo);
          (3)過P作PH⊥BC,垂足為H,當(dāng)以PM為直徑的⊙F與BC相切于點N時,求梯形PMBH的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在Rt△ABC中,∠B=90°,以O(shè)B為半徑的⊙O的圓心在邊AB上,⊙O與AB相交于點E,與AC相切于點D,已知AD=8,CD=12

          (1)求BC及AB的長              (2)求證DE//OC   
          (3)求半徑OB及線段AE的長       (4)求OC的長

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖1,⊙O是△ABC的外接圓,AB是直徑,OD∥AC,且∠CBD=∠BAC,OD交⊙O于點E.
          (1)求證:BD是⊙O的切線;
          (2)若點E為線段OD的中點,證明:以O(shè)、A、C、E為頂點的四邊形是菱形;
          (3)作CF⊥AB于點F,連接AD交CF于點G(如圖2),求FG FC 的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

          在直角坐標(biāo)平面內(nèi),點的坐標(biāo)為,點的坐標(biāo)為,圓的半徑為2.下列說法中不正確的是(    )
          .當(dāng)時,點在圓上;         .當(dāng)時,點在圓內(nèi);            
          .當(dāng)時,點在圓外;         .當(dāng)時,點在圓內(nèi).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

          半徑為2的圓中,的圓心角所對的弦長為        

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

          已知兩圓的圓心距為,其中一個圓的半徑長為,那么當(dāng)兩圓內(nèi)切時,另一圓的半徑為        

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

          等邊三角形的邊長為4,則此三角形外接圓的半徑為         。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

          如圖,點A、B、C在⊙O上,∠AOC=60º,則∠ABC=      º.

          查看答案和解析>>

          同步練習(xí)冊答案