日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 閱讀并解答問題
          用配方法可以解一元二次方程,還可以用它來解決很多問題.例如:因?yàn)?a2≥0,所以3a2+1就有最小值1,即3a2+1≥1,只有當(dāng)a=0時,才能得到這個式子的最小值1.同樣,因?yàn)?3a2≤0,所以-3a2+1有最大值1,即-3a2+1≤1,只有在a=0時,才能得到這個式子的最大值1.
          (1)當(dāng)x=______時,代數(shù)式-2(x-1)2+3有最______(填寫大或。┲禐開_____.
          (2)當(dāng)x=______時,代數(shù)式-2x2+4x+3有最______(填寫大或。┲禐開_____.
          (3)矩形花園的一面靠墻,另外三面的柵欄所圍成的總長度是16m,當(dāng)花園與墻相鄰的邊長為多少時,花園的面積最大?最大面積是多少?
          (1)1,大,3;     

          (2)∵-2x2+4x+3=-2(x-1)2+5,
          ∴當(dāng)x=1時,代數(shù)式-2x2+4x+3有最大值為5,
          故答案為:1,大,5;

          (3)根據(jù)題意可得:當(dāng)花園與墻相鄰的寬為x時,
          S=x(16-2x)=-2x2+16x,
          當(dāng)x=-
          b
          2a
          =-
          16
          2×(-2)
          =4時,
          S最大=
          4ac-b2
          4a
          =
          -16×16
          4×(-2)
          =32,
          ∴長為8時,面積最大是32.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,隧道的截面由拋物線AED和矩形ABCD構(gòu)成,矩形的長BC為8m,寬AB為2m,以BC所在的直線為x軸,線段BC的中垂線為y軸,建立平面直角坐標(biāo)系,y軸是拋物線的對稱軸,頂點(diǎn)E到坐標(biāo)原點(diǎn)O的距離為6m.
          (1)求拋物線的解析式;
          (2)一輛貨運(yùn)卡車高4.5m,寬2.4m,它能通過該隧道嗎?
          (3)如果該隧道內(nèi)設(shè)雙行道,為了安全起見,在隧道正中間設(shè)有0.4m的隔離帶,則該輛貨運(yùn)卡車還能通過隧道嗎?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

          若拋物線如圖所示,則該二次函數(shù)的解析式為______.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,已知拋物線y=ax2+bx-3與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),經(jīng)過A、B、C三點(diǎn)的圓的圓心M(1,m)恰好在此拋物線的對稱軸上,⊙M的半徑為
          5
          .設(shè)⊙M與y軸交于D,拋物線的頂點(diǎn)為E.
          (1)求m的值及拋物線的解析式;
          (2)設(shè)∠DBC=α,∠CBE=β,求sin(α-β)的值;
          (3)探究坐標(biāo)軸上是否存在點(diǎn)P,使得以P、A、C為頂點(diǎn)的三角形與△BCE相似?若存在,請指出點(diǎn)P的位置,并直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          已知拋物線y=x2-4x+3與x軸交于兩點(diǎn)A、B(A在B左側(cè)),與y軸交于點(diǎn)C.
          (1)對于任意實(shí)數(shù)m,點(diǎn)M(m,-3)是否在該拋物線上?請說明理由;
          (2)求∠ABC的度數(shù);
          (3)若點(diǎn)P在拋物線上,且使得△PBC是以BC為直角邊的直角三角形,試求出點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          在直角坐標(biāo)系XOY中,二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為C(4,-
          3
          )
          ,且與x軸的兩個交點(diǎn)間的距離為6.
          (1)求二次函數(shù)解析式;
          (2)在x軸上方的拋物線上,是否存在點(diǎn)Q,使得以點(diǎn)Q、A、B為頂點(diǎn)的三角形與△ABC相似?如果存在,請求出Q點(diǎn)的坐標(biāo),如果不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,一次函數(shù)y=-
          1
          2
          x+2
          分別交y軸、x軸于A、B兩點(diǎn),拋物線y=-x2+bx+c過A、B兩點(diǎn).
          (1)求這個拋物線的解析式;
          (2)作垂直x軸的直線x=t,在第一象限交直線AB于M,交這個拋物線于N.求當(dāng)t取何值時,MN有最大值?最大值是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          附加題:如圖所示,已知主橋拱為拋物線型,在正常水位下測得主拱寬24m,最高點(diǎn)離水面8m,以水平線AB為x軸,AB的中點(diǎn)為原點(diǎn)建立坐標(biāo)系.
          (1)此橋拱線所在拋物線的解析式.
          (2)橋邊有一浮在水面部分高4m,最寬處12
          2
          m的魚船,試探索此船能否開到橋下?說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖①,Rt△ABC中,∠B=90°,∠CAB=30度.它的頂點(diǎn)A的坐標(biāo)為(10,0),頂點(diǎn)B的坐標(biāo)為(5,5
          3
          )
          ,AB=10,點(diǎn)P從點(diǎn)A出發(fā),沿A→B→C的方向勻速運(yùn)動,同時點(diǎn)Q從點(diǎn)D(0,2)出發(fā),沿y軸正方向以相同速度運(yùn)動,當(dāng)點(diǎn)P到達(dá)點(diǎn)C時,兩點(diǎn)同時停止運(yùn)動,設(shè)運(yùn)動的時間為t秒.
          (1)求∠BAO的度數(shù).
          (2)當(dāng)點(diǎn)P在AB上運(yùn)動時,△OPQ的面積S(平方單位)與時間t(秒)之間的函數(shù)圖象為拋物線的一部分,(如圖②),求點(diǎn)P的運(yùn)動速度.
          (3)求(2)中面積S與時間t之間的函數(shù)關(guān)系式及面積S取最大值時點(diǎn)P的坐標(biāo).
          (4)如果點(diǎn)P,Q保持(2)中的速度不變,那么點(diǎn)P沿AB邊運(yùn)動時,∠OPQ的大小隨著時間t的增大而增大;沿著BC邊運(yùn)動時,∠OPQ的大小隨著時間t的增大而減小,當(dāng)點(diǎn)P沿這兩邊運(yùn)動時,使∠OPQ=90°的點(diǎn)P有幾個?請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案