日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】(原題)已知直線ABCD,點(diǎn)P為平行線AB,CD之間的一點(diǎn).如圖1,若∠ABP=50°,∠CDP=60°,BE平分ABP,DE平分∠CDP,∠BED的度數(shù)

          (探究)如圖2,當(dāng)點(diǎn)P在直線AB的上方時(shí),若∠ABP=α,∠CDP=β,∠ABP和CDP的平分線交于點(diǎn)E1,∠ABE1∠CDE1的角平分線交于點(diǎn)E2,∠ABE2∠CDE2的角平分線交于點(diǎn)E3,…以此類推,求∠En的度數(shù).

          (變式)如圖3,ABP的角平分線的反向延長(zhǎng)線和CDP的補(bǔ)角的角平分線交于點(diǎn)E,試猜想P與E的數(shù)量關(guān)系,并說明理由.

          【答案】【原題】55°;【探究】∠En的度數(shù)為(β﹣α);【變式】∠DEB=90°﹣P.理由見解析.

          【解析】

          EEF∥AB,依據(jù)平行線的性質(zhì),即可得到∠BED=∠BEF+∠DEF=∠ABE+∠CDE,依據(jù)角平分線即可得出∠BED的度數(shù);【探究】依據(jù)平行線的性質(zhì)以及三角形外角性質(zhì),求得∠E1=(β﹣α),∠E2=(β﹣α),∠E3=(β﹣α),以此類推∠En的度數(shù)為(β﹣α);【變式】過EEG∥AB,進(jìn)而得出∠DEB=∠BEG+∠DEG=∠MBE+∠FDE=∠ABQ+∠FDE,再根據(jù)平行線的性質(zhì)以及三角形外角性質(zhì),即可得到∠DEB=90°﹣(∠CDP﹣∠ABP)=90°﹣(∠AHP﹣∠ABP)=90°﹣∠P.

          如圖1,過EEF∥AB,而AB∥CD,

          ∴AB∥CD∥EF,

          ∴∠ABE=∠FEB,∠CDE=∠FED,

          ∴∠BED=∠BEF+∠DEF=∠ABE+∠CDE,

          又∵∠ABP=50°,∠CDP=60°,BE平分∠ABP,DE平分∠CDP,

          ∴∠ABE=∠ABP=25°,∠CDE=∠CDP=30°,

          ∴∠BED=25°+30°=55°,

          故答案為:55°;

          【探究】

          如圖2,∵∠ABP和∠CDP的平分線交于點(diǎn)E1,

          ∴∠ABE1=∠ABP=α,∠CDE1=∠CDP=,

          ∵AB∥CD,

          ∴∠CDF=∠AFE1=

          ∴∠E1=∠AFE1﹣∠ABE1=α=(β﹣α),

          ∵∠ABE1與∠CDE1的角平分線交于點(diǎn)E2,

          ∴∠ABE2=∠ABE1=α,∠CDE2=∠CDE1=,

          ∵AB∥CD,

          ∴∠CDG=∠AGE2=,

          ∴∠E2=∠AGE2﹣∠ABE2=(β﹣α),

          同理可得,∠E3=(β﹣α),

          以此類推,∠En的度數(shù)為(β﹣α).

          【變式】

          ∠DEB=90°﹣∠P.理由如下:

          如圖3,過EEG∥AB,而AB∥CD,

          ∴AB∥CD∥EG,

          ∴∠MBE=∠BEG,∠FDE=∠GED,

          ∴∠DEB=∠BEG+∠DEG=∠MBE+∠FDE=∠ABQ+∠FDE,

          又∵∠ABP的角平分線的反向延長(zhǎng)線和∠CDP的補(bǔ)角的角平分線交于點(diǎn)E,

          ∴∠FDE=∠PDF=(180°﹣∠CDP),∠ABQ=∠ABP,

          ∴∠DEB=∠ABP+(180°﹣∠CDP)=90°﹣(∠CDP﹣∠ABP),

          ∵AB∥CD,

          ∴∠CDP=∠AHP,

          ∴∠DEB=90°﹣(∠CDP﹣∠ABP)=90°﹣(∠AHP﹣∠ABP)=90°﹣∠P.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】樂樂是一名健步運(yùn)動(dòng)的愛好者,她用手機(jī)軟件記錄了某個(gè)月(30天)每天健步走的步數(shù)(單位:萬(wàn)步),并將記錄結(jié)果繪制成了如圖所示的統(tǒng)計(jì)圖(不完整).

          (1)若樂樂這個(gè)月平均每天健步走的步數(shù)為1.32萬(wàn)步,試求她走1.3萬(wàn)步和1.5萬(wàn)步的天數(shù);
          (2)求這組數(shù)據(jù)中的眾數(shù)和中位數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,以直線AB上一點(diǎn)O為端點(diǎn)作射線OC,使∠BOC=70°,將一個(gè)直角三角形的直角頂點(diǎn)放在點(diǎn)O處.(注:∠DOE=90°)

          (1)如圖①,若直角三角板DOE的一邊OD放在射線OB上,則∠COE=   °;

          (2)如圖②,將直角三角板DOE繞點(diǎn)O逆時(shí)針方向轉(zhuǎn)動(dòng)到某個(gè)位置,若OC恰好平分∠BOE,求∠COD的度數(shù);

          (3)如圖③,將直角三角板DOE繞點(diǎn)O轉(zhuǎn)動(dòng),如果OD始終在∠BOC的內(nèi)部,試猜想∠BOD和∠COE有怎樣的數(shù)量關(guān)系?并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】甲乙兩車間共120人,其中甲車間人數(shù)比乙車間人數(shù)的4倍少5.

          1求甲、乙兩車間各有多少人?

          2若從甲、乙兩車間分別抽調(diào)工人,組成丙車間研制新產(chǎn)品,并使甲、乙、丙三個(gè)車間的人數(shù)比為1347,那么甲、乙兩車間要分別抽調(diào)多少工人?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某電器超市銷售每臺(tái)進(jìn)價(jià)為120元、170元的A,B兩種型號(hào)的電風(fēng)扇,如表所示是近2周的銷售情況:(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷售收入一進(jìn)貨成本)

          銷售時(shí)段

          銷售數(shù)量

          銷售收入

          A種型號(hào)

          B種型號(hào)

          第一周

          6

          5

          2200元

          第二周

          4

          10

          3200元

          (1)求A、B兩種型號(hào)的電風(fēng)扇的銷售單價(jià);

          (2)若超市再采購(gòu)這兩種型號(hào)的電風(fēng)扇共130臺(tái),并且全部銷售完,該超市能否實(shí)現(xiàn)這兩批的總利潤(rùn)為8010元的目標(biāo)?若能,請(qǐng)給出相應(yīng)的采購(gòu)方案;若不能,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某星期天下午,小強(qiáng)和同學(xué)小穎相約在某公共汽車站一起乘車回學(xué)校,小強(qiáng)從家出發(fā)先步行到車站,等小穎到了后兩人一起乘公共汽車回學(xué)校,圖中折線表示小強(qiáng)離開家的路程y(公里)和所用時(shí)間x(分)之間的函數(shù)關(guān)系,下列說法中錯(cuò)誤的是( 。

          A. 小強(qiáng)乘公共汽車用了20分鐘 B. 小強(qiáng)在公共汽車站等小穎用了10分鐘

          C. 公共汽車的平均速度是30公里/小時(shí) D. 小強(qiáng)從家到公共汽車站步行了2公里

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,點(diǎn)P是正方形ABCD內(nèi)一點(diǎn),點(diǎn)P到點(diǎn)A,BD的距離分別為1,2.△ADP沿點(diǎn)A旋轉(zhuǎn)至ABP,連接PP,并延長(zhǎng)APBC相交于點(diǎn)Q.

          (1)求證:APP是等腰直角三角形;

          (2)BPQ的大。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在棋盤中建立如圖的直角坐標(biāo)系,三顆棋子A,O,B的位置如圖,它們分別是(-1,1),(0,0)和(1,0).

          (1)如圖2,添加棋子C,使A,O,B,C四顆棋子成為一個(gè)軸對(duì)稱圖形,請(qǐng)?jiān)趫D中畫出該圖形的對(duì)稱軸;

          (2)在其他格點(diǎn)位置添加一顆棋子P,使A,O,B,P四顆棋子成為一個(gè)軸對(duì)稱圖形,請(qǐng)直接寫出棋子P的位置的坐標(biāo).(寫出2個(gè)即可)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】二次函數(shù)y=x2+bx的圖象如圖,對(duì)稱軸為直線x=1,若關(guān)于x的一元二次方程x2+bx﹣t=0(t為實(shí)數(shù))在﹣1<x<4的范圍內(nèi)有解,則t的取值范圍是(
          A.t≥﹣1
          B.﹣1≤t<3
          C.﹣1≤t<8
          D.3<t<8

          查看答案和解析>>

          同步練習(xí)冊(cè)答案