日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在Rt△ABC中,∠BAC=90°,O是AB邊上的一點,以OA為半徑的⊙O與邊BC相切于點E.

          (1)若AC=5,BC=13,求⊙O的半徑;
          (2)過點E作弦EF⊥AB于M,連接AF,若∠F=2∠B,求證:四邊形ACEF是菱形.

          【答案】
          (1)解:連接OE,設圓O半徑為人,

          在Rt△ABC中,BC=13,AC=5,

          根據(jù)勾股定理得:AB= =12,

          ∵BC與圓O相切,

          ∴OE⊥BC,

          ∴∠OEB=∠BAC=90°,

          ∵∠B=∠B,

          ∴△BOE∽△BCA,

          = ,即 = ,

          解得:r= ;


          (2)解:∵ = ,∠F=2∠B,

          ∴∠AOE=2∠F=4∠B,

          ∵∠AOE=∠OEB+∠B,

          ∴∠B=30°,∠F=60°,

          ∵EF⊥AD,

          ∴∠EMB=∠CAB=90°,

          ∴∠MEB=∠F=60°,CA∥EF,

          ∴CB∥AF,

          ∴四邊形ACEF為平行四邊形,

          ∵∠CAB=90°,OA為半徑,

          ∴CA為圓O的切線,

          ∵BC為圓O的切線,

          ∴CA=CE,

          ∴平行四邊形ACEF為菱形


          【解析】(1)連接OE,設圓的半徑為r,在之間三角形ABC中,利用勾股定理求出AB的長,根據(jù)BC與圓相切,得到OE垂直于BC,進而得到一對直角相等,再由一對公共角,利用兩角相等的三角形相似得到三角形BOE與三角形ABC相似,由相似得比例求出r的值即可;(2)利用同弧所對的圓周角相等,得到∠AOE=4∠B,進而求出∠B與∠F的度數(shù),根據(jù)EF與AD垂直,得到一對直角相等,確定出∠MEB=∠F=60°,CA與EF平行,進而得到CB與AF平行,確定出四邊形ACEF為平行四邊形,再由∠CAB為直角,得到CA為圓的切線,利用切線長定理得到CA=CE,利用鄰邊相等的平行四邊形為菱形即可得證.此題考查了切線的性質(zhì),菱形的判定,相似三角形的判定與性質(zhì),以及垂徑定理,熟練掌握性質(zhì)及定理是解本題的關鍵.
          【考點精析】掌握菱形的判定方法和垂徑定理是解答本題的根本,需要知道任意一個四邊形,四邊相等成菱形;四邊形的對角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對角線若垂直,順理成章為菱形;垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條。

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】列方程或方程組解應用題:

          某中學為迎接校運會,籌集7000元購買了甲、乙兩種品牌的籃球共30個,其中購買甲品牌籃球花費3000元,已知甲品牌籃球比乙品牌籃球的單價高50%,求乙品牌籃球的單價及個數(shù)。

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,已知A(n,﹣2),B(1,4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y= 的圖象的兩個交點,直線AB與y軸交于點C.

          (1)求反比例函數(shù)和一次函數(shù)的關系式;
          (2)求△AOC的面積;
          (3)求不等式kx+b﹣ <0的解集.(直接寫出答案)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,點B,F,C,E在直線lFC之間不能直接測量,點A,Dl異側(cè),測得AB=DE,AC=DF,BF=EC.

          1求證:ABC≌△DEF;

          2指出圖中所有平行的線段,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】根據(jù)頻數(shù)分布表或頻數(shù)分布直方圖求加權(quán)平均數(shù)時,統(tǒng)計中常用各組的組中值代表各組的實際數(shù)據(jù),把各組的頻數(shù)看作相應組中值的權(quán),請你依據(jù)以上知識,解決下面的實際問題.
          為了解5路公共汽車的運營情況,公交部門統(tǒng)計了某天5路公共汽車每個運行班次的載客量,并按載客量的多少分成A,B,C,D四組,得到如下統(tǒng)計圖:

          (1)求A組對應扇形圓心角的度數(shù),并寫出這天載客量的中位數(shù)所在的組;
          (2)求這天5路公共汽車平均每班的載客量;
          (3)如果一個月按30天計算,請估計5路公共汽車一個月的總載客量,并把結(jié)果用科學記數(shù)法表示出來.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,一拋物線型拱橋,當拱頂?shù)剿娴木嚯x為2米時,水面寬度為4米;那么當水位下降1米后,水面的寬度為米.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】下列各式:a0=1a2a3=a5;22=;35+24÷8×1=0;x2+x2=2x2,其中正確的是( 。

          A①②③B、①③⑤

          C、②③④D、②④⑤

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在ABCD中,E為對角線AC延長線上的一點.

          (1)若四邊形ABCD是菱形,求證:BEDE.

          (2)寫出(1)的逆命題,并判斷其是真命題還是假命題,若是真命題,給出證明;若是假命題,舉出反例.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】(10分) 把一張矩形ABCD紙片按如圖方式折疊,使點A與點E重合,點C與點F重合(E、F兩點均在BD上),折痕分別為BH、DG.

          (1)求證:BHE≌△DGF;

          (2)若AB=6cm,BC=8cm,求線段FG的長.

          查看答案和解析>>

          同步練習冊答案