日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,⊙OABC的外接圓,O點在BC邊上,∠BAC的平分線交⊙O于點D,連接BDCD,過點DBC的平行線,與AB的延長線相交于點P

          1)求證:PD是⊙O的切線;

          2)若AB3,AC4,求線段PB的長.

          【答案】1)見解析;(2PB.

          【解析】

          1)由直徑所對的圓周角為直角得到∠BAC為直角,再由AD為角平分線,得到一對角相等,根據(jù)同弧所對的圓心角等于圓周角的2倍及等量代換確定出∠DOC為直角,與平行線中的一條垂直,與另一條也垂直得到ODPD垂直,即可得證;

          2)由PDBC平行,得到一對同位角相等,再由同弧所對的圓周角相等及等量代換得到∠P=∠ACD,根據(jù)同角的補角相等得到一對角相等,利用兩對角相等的三角形相似;由三角形ABC為直角三角形,利用勾股定理求出BC的長,再由OD垂直平分BC,得到DBDC,相似三角形的性質(zhì),得比例,求出所求即可.

          1)證明:∵圓心OBC上,

          BC是圓O的直徑,

          ∴∠BAC90°,

          連接OD,

          AD平分∠BAC

          ∴∠BAC2DAC,

          ∵∠DOC2DAC,

          ∴∠DOC=∠BAC90°,即ODBC,

          PDBC

          ODPD,

          OD為圓O的半徑,

          PD是圓O的切線;

          2)∵PDBC,

          ∴∠P=∠ABC,

          ∵∠ABC=∠ADC,

          ∴∠P=∠ADC

          ∵∠PBD+ABD180°,∠ACD+ABD180°,

          ∴∠PBD=∠ACD,

          ∴△PBD∽△DCA;

          ∵△ABC為直角三角形,

          BC2AB2+AC232+4225,

          BC5

          OD垂直平分BC,

          DBDC

          BC為圓O的直徑,

          ∴∠BDC90°,

          RtDBC中,DB2+DC2BC2,即2DC2BC225,

          DCDB

          ∵△PBD∽△DCA

          ,

          PB

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,邊長為2的正方形ABCD的頂點A、B在一個半徑為2的圓上, 頂點C、D在圓內(nèi),將正方形ABCD沿圓的內(nèi)壁作無滑動的滾動當(dāng)滾動一周回到原位置時,點C運動的路徑長為__ _

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在等腰△ABC中,ABBC,以AB為直徑的半圓分別交AC、BC于點D、E兩點,BF⊙O相切于點B,交AC的延長線于點F

          1)求證:DAC的中點;

          2)若AB12,sinCAE,求CF的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖, 拋物線軸交于點A(-1,0),頂點坐標(biāo)(1,n)與軸的交點在(0,2),(0,3)之間(包 含端點),則下列結(jié)論:①;②;③對于任意實數(shù)m,總成立;④關(guān)于的方程有兩個不相等的實數(shù)根.其中結(jié)論正確的個數(shù)為  

          A. 1 個 B. 2 個 C. 3 個 D. 4 個

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】反比例函數(shù)ya0a為常數(shù))和y在第一象限內(nèi)的圖象如圖所示,點My的圖象上,MCx軸于點C,交y的圖象于點A;MDy軸于點D,交y的圖象于點B,當(dāng)點My的圖象上運動時,以下結(jié)論:①SODBSOCA;②四邊形OAMB的面積不變;③當(dāng)點AMC的中點時,則點BMD的中點.其中正確結(jié)論是( 。

          A. ①② B. ①③ C. ②③ D. ①②③

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】問題情境:

          在綜合與實踐課上,老師讓同學(xué)們以矩形紙片的剪拼為主題開展數(shù)學(xué)活動.如圖1,將矩形紙片沿對角線剪開,得到.并且量得,.

          操作發(fā)現(xiàn):

          (1)將圖1中的以點為旋轉(zhuǎn)中心,按逆時針方向旋轉(zhuǎn),使,得到如圖2所示的,過點的平行線,與的延長線交于點,則四邊形的形狀是________.

          (2)創(chuàng)新小組將圖1中的以點為旋轉(zhuǎn)中心,按逆時針方向旋轉(zhuǎn),使、三點在同一條直線上,得到如圖3所示的,連接,取的中點,連接并延長至點,使,連接、,得到四邊形,發(fā)現(xiàn)它是正方形,請你證明這個結(jié)論.

          實踐探究:

          (3)縝密小組在創(chuàng)新小組發(fā)現(xiàn)結(jié)論的基礎(chǔ)上,進行如下操作:將沿著方向平移,使點與點重合,此時點平移至點,相交于點,如圖4所示,連接,試求的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,正方形ABCD的邊長為10,點E,F分別為BCAB邊的中點.連接AE、DF,兩線交于點H,連接BH并延長,交邊AD于點G.下列結(jié)論:①△ABE≌△DAF,②cosBAE=,③S四邊形CDHE=111,④AG=其中正確的是(

          A.①③④B.①②③

          C.①④D.②③④

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知在四邊形ABCD中,ADBC,∠ABC90°,以AB為直徑的O交邊DCE、F兩點,AD1,BC5,設(shè)O的半徑長為r

          1)聯(lián)結(jié)OF,當(dāng)OFBC時,求O的半徑長;

          2)過點OOHEF,垂足為點H,設(shè)OHy,試用r的代數(shù)式表示y;

          3)設(shè)點GDC的中點,聯(lián)結(jié)OG、OD,△ODG是否能成為等腰三角形?如果能,試求出r的值;如不能,試說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案