【題目】如圖,中,
,
,
于點(diǎn)E,
于點(diǎn)D,BE與AD相交于F.
求證:
;
若
,求AF的長(zhǎng).
【答案】(1)證明見(jiàn)解析(2)AF=3
【解析】
(1)根據(jù)等腰三角形腰長(zhǎng)相等性質(zhì)可得AD=BD,即可求證△BDF≌△ACD,即可解答;
(2)連接CF,根據(jù)全等三角形的性質(zhì)得到DF=DC,得到△DFC是等腰直角三角形.推出AE=EC,BE是AC的垂直平分線.于是得到結(jié)論.
解:(1)AD⊥BD,∠BAD=45°,
∴AD=BD,
∵∠BFD=∠AFE,∠AFE+∠CAD=90°,∠CAD+∠ACD=90°,
∴∠BFD=∠ACD,
在△BDF和△ACD中,
∴△BDF≌△ACD(AAS),
∴BF=AC;
(2)連接CF,
∵△BDF≌△ADC,
∴DF=DC,
∴△DFC是等腰直角三角形.
∵CD=3,CF=CD=3
,
∵AB=BC,BE⊥AC,
∴AE=EC,BE是AC的垂直平分線.
∴AF=CF,
∴AF=3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于平面直角坐標(biāo)系中的點(diǎn)
,若點(diǎn)
的坐標(biāo)為
(其中
為常數(shù),且
),則稱點(diǎn)
為點(diǎn)
的“
之雅禮點(diǎn)”.例如:
的“
之雅禮點(diǎn)”為
,即
.
(1)①點(diǎn)的 “
之雅禮點(diǎn)”
的坐標(biāo)為___________;
②若點(diǎn)的“
之雅禮點(diǎn)”
的坐標(biāo)為
,請(qǐng)寫(xiě)出一個(gè)符合條件的點(diǎn)
的坐標(biāo)_________;
(2)若點(diǎn)在
軸的正半軸上,點(diǎn)
的“
之雅禮點(diǎn)”為
點(diǎn),且
為等腰直角三角形,則
的值為____________;
(3)在(2)的條件下,若關(guān)于的分式方程
無(wú)解,求
的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明在課外學(xué)習(xí)時(shí)遇到這樣一個(gè)問(wèn)題:
定義:如果二次函數(shù)與
滿足
,
,
,則稱這兩個(gè)函數(shù)互為“旋轉(zhuǎn)函數(shù)”.
求函數(shù)的“旋轉(zhuǎn)函數(shù)”.
小明是這樣思考的:由函數(shù)可知,
,
,
,根據(jù)
,
,
,求出
,
,
,就能確定這個(gè)函數(shù)的“旋轉(zhuǎn)函數(shù)”.
請(qǐng)參考小明的方法解決下面問(wèn)題:
(1)直接寫(xiě)出函數(shù)的“旋轉(zhuǎn)函數(shù)”;
(2)若函數(shù)與
互為“旋轉(zhuǎn)函數(shù)”,求
的值;
(3)已知函數(shù)的圖象與
軸交于點(diǎn)A、B兩點(diǎn)(A在B的左邊),與
軸交于點(diǎn)C,點(diǎn)A、B、C關(guān)于原點(diǎn)的對(duì)稱點(diǎn)分別是A1,B1,C1,試證明經(jīng)過(guò)點(diǎn)A1,B1,C1的二次函數(shù)與函數(shù)
互為“旋轉(zhuǎn)函數(shù)”。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一座拋物線型拱橋,已知橋下在正常水位AB時(shí),水面寬8m,水位上升3m, 就達(dá)到警戒水位CD,這時(shí)水面寬4m,若洪水到來(lái)時(shí),水位以每小時(shí)0.2m的速度上升,求水過(guò)警戒水位后幾小時(shí)淹到橋拱頂.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形ABCD為正方形,點(diǎn)E為線段AC上一點(diǎn),連接DE,過(guò)點(diǎn)E作EF⊥DE,交射線BC于點(diǎn)F,以DE、EF為鄰邊作矩形DEFG,連接CG.
(1)如圖1,求證:矩形DEFG是正方形;
(2)若AB=2,CE=,求CG的長(zhǎng)度;
(3)當(dāng)線段DE與正方形ABCD的某條邊的夾角是30°時(shí),直接寫(xiě)出∠EFC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=120,AD⊥BC,且AD=AB.
(1)如圖1,DE⊥AB,DF⊥AC,垂足分別為點(diǎn)E,F(xiàn),求證:AE+AF=AD
(2)如圖2,如果∠EDF=60,且∠EDF兩邊分別交邊AB,AC于點(diǎn)E,F(xiàn),那么線段AE,AF,AD之間有怎樣的數(shù)量關(guān)系?并給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,每個(gè)小正方形的邊長(zhǎng)都為1,四邊形ABCD的頂點(diǎn)都在小正方形的頂點(diǎn)上.
(1)求四邊形ABCD的面積;
(2)∠BCD是直角嗎?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】農(nóng)八師石河子市某中學(xué)初三(1)班的學(xué)生,在一次數(shù)學(xué)活動(dòng)課中,來(lái)到市游憩廣場(chǎng),測(cè)量坐落在廣場(chǎng)中心的王震將軍的銅像高度,已知銅像底座的高為3.5m.某小組的實(shí)習(xí)報(bào)告如下.請(qǐng)你計(jì)算出銅像的高(結(jié)果精確到0.1m)
實(shí)習(xí)報(bào)告2003年9月25日
題目1 | 測(cè)量底部可以到達(dá)的銅像高 | |||
測(cè) 得 數(shù) 據(jù) | 測(cè)量項(xiàng)目 | 第一次 | 第二次 | 平均值 |
BD的長(zhǎng) | 12.3m | 11.7m | ||
測(cè)傾器CD的高 | 1.32m | 1.28m | ||
傾斜角 | α=30°56' | α=31°4' | ||
計(jì) 算 | ||||
結(jié)果 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,
,
,
是
的角平分線,
于點(diǎn)
.
(1)如圖,連接
,求證:
是等邊三角形;
(2)點(diǎn)是線段
上的一點(diǎn)(不與點(diǎn)
重合),以
為一邊,在
的下方作
,
交
延長(zhǎng)線于點(diǎn)
,請(qǐng)你在圖
中畫(huà)出完整圖形,并直接寫(xiě)出
與
之間的數(shù)量關(guān)系;
(3)如圖,點(diǎn)
是線段
上的一點(diǎn),以
為一邊,在
的下方作
,
交
延長(zhǎng)線于點(diǎn)
,試探究
與
數(shù)量之間的關(guān)系,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com