【題目】如圖,已知直角三角形的直角邊
在
軸上,雙曲線(xiàn)
與直角邊
交于點(diǎn)
,與斜邊
交于點(diǎn)
,
,則
的面積為________.
【答案】4
【解析】
作DE⊥OA于E點(diǎn),易得DE∥AB,根據(jù)三角形相似的判定得到Rt△OED∽R(shí)t△OAB,則DE:AB=OE:OA=OD:OB,而OD=OB,即OB=3OD,可得到AB=3DE,OA=3OE,設(shè)D點(diǎn)坐標(biāo)為(a,
),則B點(diǎn)坐標(biāo)為(3a,
),可分別得到A點(diǎn)坐標(biāo)為(3a,0),C點(diǎn)坐標(biāo)為(3a,
),然后利用S△OBC=
OABC進(jìn)行計(jì)算即可.
作DE⊥OA于E點(diǎn),如圖,
∵∠OAB=90°,
∴DE∥AB,
∴Rt△OED∽R(shí)t△OAB,
∴DE:AB=OE:OA=OD:OB,
而OD=OB,即OB=3OD,
∴AB=3DE,OA=3OE,
設(shè)D點(diǎn)坐標(biāo)為(a,),則B點(diǎn)坐標(biāo)為(3a,
),
∴A點(diǎn)坐標(biāo)為(3a,0),C點(diǎn)的橫坐標(biāo)為3a,
而C點(diǎn)在y=的圖象上,
把x=3a代入y=得y=
,
∴C點(diǎn)坐標(biāo)為(3a,),
∴S△OBC=OABC=
3a(
)=4.
故答案為:4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,是
直徑,半徑
,點(diǎn)
在
上,且點(diǎn)
與點(diǎn)
在直徑
的兩側(cè),連結(jié)
,
.若
,則
的度數(shù)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】《幾何原本》是一部集前人思想和歐幾里得個(gè)人創(chuàng)造性于一體的不朽之作,它建立了一套從公理、定義出發(fā),論證命題得到定理的幾何學(xué)論證方法,形成了一個(gè)嚴(yán)密的邏輯體系﹣﹣﹣幾何學(xué).以下是《幾何原本》第一卷中的命題6,請(qǐng)完成它的證明過(guò)程.
命題6:如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等.
已知: .
求證: .
證明:若AB≠AC,其中必有一個(gè)較大,不妨設(shè)AB>AC,在AB上截取BD=AC,
連接DC.
∵ ,
,
,
∴△ACB≌△DBC
∴∠BDC=∠CAB .
又∠BDC>∠CAB .
∴∠BDC與∠CAB即等于又大于,顯然是矛盾的.
∴假設(shè)不成立,即AB=AC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰中,
,點(diǎn)
在線(xiàn)段
上運(yùn)動(dòng)(
不與
、
重合),連接
,作
,
交線(xiàn)段
于點(diǎn)
.
(1)若,證明:
;
(2)在點(diǎn)的運(yùn)動(dòng)過(guò)程中,
的形狀可以是等腰三角形嗎?若可以,請(qǐng)直接寫(xiě)出
的度數(shù);若不可以,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有、
、
三個(gè)居民小區(qū)的位置成三角形,現(xiàn)決定在三個(gè)小區(qū)之間修建一個(gè)購(gòu)物超市,使超市到三個(gè)小區(qū)的距離相等,則超市應(yīng)建在( )
A.在∠A、∠B兩內(nèi)角平分線(xiàn)的交點(diǎn)處
B.在AC、BC兩邊垂直平分線(xiàn)的交點(diǎn)處
C.在AC、BC兩邊高線(xiàn)的交點(diǎn)處
D.在AC、BC兩邊中線(xiàn)的交點(diǎn)處
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿(mǎn)分10分)如圖,直線(xiàn)y=﹣x+6分別與x軸、y軸交于A、B兩點(diǎn);直線(xiàn)y=
x與AB交于點(diǎn)C,與過(guò)點(diǎn)A且平行于y軸的直線(xiàn)交于點(diǎn)D.點(diǎn)E從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度沿x軸向左運(yùn)動(dòng).過(guò)點(diǎn)E作x軸的垂線(xiàn),分別交直線(xiàn)AB、OD于P、Q兩點(diǎn),以PQ為邊向右作正方形PQMN.設(shè)正方形PQMN與△ACD重疊部分(陰影部分)的面積為S(平方單位),點(diǎn)E的運(yùn)動(dòng)時(shí)間為t(秒).
(1)求點(diǎn)C的坐標(biāo).
(2)當(dāng)0<t<5時(shí),求S與t之間的函數(shù)關(guān)系式,并求S的最大值。
(3)當(dāng)t>0時(shí),直接寫(xiě)出點(diǎn)(5,3)在正方形PQMN內(nèi)部時(shí)t的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)的解析式為
,且
與
軸交于點(diǎn)D,直線(xiàn)
經(jīng)過(guò)點(diǎn)
、
,直線(xiàn)
、
交于點(diǎn)C.
(1)求直線(xiàn)的解析表達(dá)式;
(2)求的面積;
(3)在直線(xiàn)上存在異于點(diǎn)C的另一點(diǎn)P,使得
與
的面積相等,請(qǐng)求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工程隊(duì)在我市實(shí)施棚戶(hù)區(qū)改造過(guò)程中承包了一項(xiàng)拆遷工程.原計(jì)劃每天拆遷,因?yàn)闇?zhǔn)備工作不足,第一天少拆遷了
.從第二天開(kāi)始,該工程隊(duì)加快了拆遷速度,第三天拆遷了
.求:
該工程隊(duì)第一天拆遷的面積;
若該工程隊(duì)第二天、第三天每天的拆遷面積比前一天增加的百分?jǐn)?shù)相同,求這個(gè)百分?jǐn)?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程x2 -(m+1)x+2(m-1)=0,
(1)求證:無(wú)論m取何值時(shí),方程總有實(shí)數(shù)根;
(2)若等腰三角形腰長(zhǎng)為4,另兩邊恰好是此方程的根,求此三角形的另外兩條邊長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com