日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)已知:如圖等腰三角形ABC中,AB=AC,BD平分∠ABC交AC于D,若∠BDC=78°,求∠C的度數(shù)?
          分析:首先根據(jù)AB=AC可得到∠ABC=∠ACB,再根據(jù)角平分線的性質(zhì)可得∠ABD=∠DBC=
          1
          2
          ∠ABC=
          1
          2
          ∠C,設(shè)出∠C=x°,可根據(jù)三角形內(nèi)角和定理求出答案.
          解答:解:∵AB=AC,
          ∴∠ABC=∠ACB,
          ∵BD平分∠B交AC于點(diǎn)D,
          ∴∠ABD=∠DBC=
          1
          2
          ∠ABC=
          1
          2
          ∠C,
          設(shè)∠C=x°,則∠DBC=
          1
          2
          x°,
          ∵∠BDC=78°,
          ∴x+
          1
          2
          x+78=180,
          解得:x=68,
          ∴∠C的度數(shù)是68°.
          點(diǎn)評(píng):此題主要考查了等腰三角形的性質(zhì),以及三角形內(nèi)角和定理,關(guān)鍵是根據(jù)條件理清角之間的關(guān)系,然后再利用方程思想解決即可.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          已知,如圖,三角形ABC是等腰直角三角形,∠ACB=90°,F(xiàn)是AB的中點(diǎn),直線l經(jīng)過(guò)點(diǎn)C,分別過(guò)點(diǎn)A、B作l的垂線,即AD⊥CE,BE⊥CE,
          (1)如圖1,當(dāng)CE位于點(diǎn)F的右側(cè)時(shí),求證:△ADC≌△CEB;
          (2)如圖2,當(dāng)CE位于點(diǎn)F的左側(cè)時(shí),求證:ED=BE-AD;
          (3)如圖3,當(dāng)CE在△ABC的外部時(shí),試猜想ED、AD、BE之間的數(shù)量關(guān)系,并證明你的猜想.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

          24、先閱讀下面的材料,然后解答問(wèn)題:
          已知:如圖1等腰直角三角形ABC中,∠B=90°,AD是角平分線,交BC邊于點(diǎn)D.
          求證:AC=AB+BD.
          證明:如圖1,在AC上截取AE=AB,連接DE,則由已知條件易知:Rt△ADB≌Rt△ADE(AAS)
          ∴∠AED=∠B=90°,DE=DB
          又∵∠C=45°,∴△DEC是等腰直角三角形.
          ∴DE=EC.
          ∴AC=AE+EC=AB+BD.
          我們將這種證明一條線段等于另兩線段和的方法稱為“截長(zhǎng)法”.
          解決問(wèn)題:現(xiàn)將原題中的“AD是內(nèi)角平分線,交BC邊于點(diǎn)D”換成“AD是外角平分線,交BC邊的延長(zhǎng)線于點(diǎn)D,如圖2”,其他條件不變,請(qǐng)你猜想線段AC、AB、BD之間的數(shù)量關(guān)系,并證明你的猜想.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知:如圖等腰三角形ABC中,AB=AC,BD平分∠ABC交AC于D,若∠BDC=78°,求∠C的度數(shù)?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2011年河北省保定市中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

          先閱讀下面的材料,然后解答問(wèn)題:
          已知:如圖1等腰直角三角形ABC中,∠B=90°,AD是角平分線,交BC邊于點(diǎn)D.
          求證:AC=AB+BD.
          證明:如圖1,在AC上截取AE=AB,連接DE,則由已知條件易知:Rt△ADB≌Rt△ADE(AAS)
          ∴∠AED=∠B=90°,DE=DB
          又∵∠C=45°,∴△DEC是等腰直角三角形.
          ∴DE=EC.
          ∴AC=AE+EC=AB+BD.
          我們將這種證明一條線段等于另兩線段和的方法稱為“截長(zhǎng)法”.
          解決問(wèn)題:現(xiàn)將原題中的“AD是內(nèi)角平分線,交BC邊于點(diǎn)D”換成“AD是外角平分線,交BC邊的延長(zhǎng)線于點(diǎn)D,如圖2”,其他條件不變,請(qǐng)你猜想線段AC、AB、BD之間的數(shù)量關(guān)系,并證明你的猜想.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案