日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)如圖,ΔABC中,∠ABC=50°,∠ACB=70°,D為邊BC上一點(diǎn)(D與B、C不重合),連接AD,∠ADB的平分線(xiàn)所在直線(xiàn)分別交直線(xiàn)AB、AC于點(diǎn)E、F. 求證:2∠AED-∠CAD=170°;

          (2)若∠ABC=∠ACB=n°,且D為射線(xiàn)CB上一點(diǎn),(1)中其他條件不變,請(qǐng)直接寫(xiě)出∠AED與∠CAD的數(shù)量關(guān)系.(用含n的代數(shù)式表示)
          (1)根據(jù)角平分線(xiàn)的性質(zhì)可設(shè)∠ADE=∠BDE=x°,由∠AED=∠ABC+∠BDE,∠ABC=50°可得∠AED= x°+50°①,根據(jù)三角形的外角的性質(zhì)可得∠ADB=∠ACB+∠CAD,即可得到∠CAD=∠ADB-∠ACB,由∠ACB=70°,∠ADB=(2x)°可得∠CAD=(2x)°-70°②,由①×2-②即可證得結(jié)論;
          (2)2∠AED-∠CAD=(3n)°或2∠AED+∠CAD=540°-(3n)°.

          試題分析:(1)根據(jù)角平分線(xiàn)的性質(zhì)可設(shè)∠ADE=∠BDE=x°,由∠AED=∠ABC+∠BDE,∠ABC=50°可得∠AED= x°+50°①,根據(jù)三角形的外角的性質(zhì)可得∠ADB=∠ACB+∠CAD,即可得到∠CAD=∠ADB-∠ACB,由∠ACB=70°,∠ADB=(2x)°可得∠CAD=(2x)°-70°②,由①×2-②即可證得結(jié)論;
          (2)解法同(1).
          解:(1)DE平分∠ADB
          ∴設(shè)∠ADE=∠BDE=x°
          ∵∠AED=∠ABC+∠BDE,∠ABC=50°
          ∴∠AED= x°+50°        ①
          ∵∠ADB=∠ACB+∠CAD
          ∴∠CAD=∠ADB-∠ACB
          ∵∠ACB=70°,∠ADB=(2x)°
          ∴∠CAD=(2x)°-70°      ②
          ∴由①×2-②,得:2∠AED-∠CAD=170°;
          (2)2∠AED-∠CAD=(3n)°或2∠AED+∠CAD=540°-(3n)°.
          點(diǎn)評(píng):此類(lèi)問(wèn)題難度較大,在中考中比較常見(jiàn),一般在壓軸題中出現(xiàn),需特別注意.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,在某小區(qū)的休閑廣場(chǎng)有一個(gè)正方形花園ABCD,為了便于觀賞,要在AD、BC之間修一條小路,在AB、DC之間修另一條小路,使這兩條小路等長(zhǎng).設(shè)計(jì)師給出了以下幾種設(shè)計(jì)方案:
          ①如圖1,E是AD上一點(diǎn),過(guò)A作BE的垂線(xiàn),交BE于點(diǎn)O,交CD于點(diǎn)H,則線(xiàn)段AH、BE為等長(zhǎng)的小路;

          ②如圖2,E是AD上一點(diǎn),過(guò)BE上一點(diǎn)O作BE的垂線(xiàn),交AB于點(diǎn)G,交CD于點(diǎn)H,則線(xiàn)段GH、BE為等長(zhǎng)的小路;

          ③如圖3,過(guò)正方形ABCD內(nèi)任意一點(diǎn)O作兩條互相垂直的直線(xiàn),分別交AD、BC于點(diǎn)E、F,交AB、CD于點(diǎn)G、H,則線(xiàn)段GH、EF為等長(zhǎng)的小路;

          根據(jù)以上設(shè)計(jì)方案,解答下列問(wèn)題:
          (1)你認(rèn)為以上三種設(shè)計(jì)方案都符合要求嗎?
          (2)要根據(jù)圖1完成證明,需要證明△   ≌△   ,進(jìn)而得到線(xiàn)段  =  ;
          (3)如圖4,在正方形ABCD外面已經(jīng)有一條夾在直線(xiàn)AD、BC之間長(zhǎng)為EF的小路,想在直線(xiàn)AB、DC之間修一條和EF等長(zhǎng)的小路,并且使這條小路的延長(zhǎng)線(xiàn)過(guò)EF上的點(diǎn)O,請(qǐng)畫(huà)草圖(加以論述),并給出詳細(xì)的證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,點(diǎn)F、B、E、C在同一直線(xiàn)上,并且BF=CE,∠ABC=∠DEF.能否由上面的已知條件證明△ABC≌△DEF?如果能,請(qǐng)給出證明;如果不能,請(qǐng)從下列三個(gè)條件中選擇一個(gè)合適的條件,添加到已知條件中,使△ABC≌△DEF,并給出證明.
          提供的三個(gè)條件是:①AB=DE;②AC=DF;③AC∥DF.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          等腰三角形的兩邊長(zhǎng)分別是3和7,則其周長(zhǎng)為   

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          小明是積極思考,喜歡探究問(wèn)題的同學(xué)。一天,如圖1,他將直角三角板ABC(∠ACB=30°,∠ABC=60°)和直角三角板ADE(∠DAE=∠DEA=45°)擺放在一起;如圖2,固定三角板ABC,將三角板ADE繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn),記旋轉(zhuǎn)角為  

          (1)當(dāng)_____時(shí),AD∥BC,在圖3中畫(huà)出相應(yīng)圖形;

          (2)若當(dāng)三角板ADE繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn)過(guò)程中,兩三角板某一邊平行(不共線(xiàn))。例如,如圖4,,此時(shí)DE∥BC,請(qǐng)你寫(xiě)出除(1)和情況以外,兩三角板某一邊平行(不共線(xiàn))時(shí),的所有可能的度數(shù)________________.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          如果一個(gè)多邊形的每一個(gè)外角都等于40°,那么這個(gè)多邊形的邊數(shù)為
          A.9B.8 C.7D.6

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          如圖,的外角,的平分線(xiàn)與的平分線(xiàn)交于點(diǎn)的平分線(xiàn)與的平分線(xiàn)交于點(diǎn),……,的平分線(xiàn)與的平分線(xiàn)交于點(diǎn),設(shè),則.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE。
          求證:四邊形BCDE是矩形。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          我們規(guī)定:將一個(gè)平面圖形分成面積相等的兩部分的直線(xiàn)叫做該平面圖形的“面線(xiàn)”,“面線(xiàn)”被這個(gè)平面圖形截得的線(xiàn)段叫做該圖形的“面徑”(例如圓的直徑就是它的“面徑”).已知等邊三角形的邊長(zhǎng)為2,則它的“面徑”長(zhǎng)可以是     (寫(xiě)出1個(gè)即可).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案