日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知二次函數(shù)y=ax2+bx+c的象經(jīng)過(guò)A(﹣1,0)、B(3,0)、N(2,3)三點(diǎn),且與y軸交于點(diǎn)C.

          (1)求這個(gè)二次函數(shù)的解析式,并寫(xiě)出頂點(diǎn)M及點(diǎn)C的坐標(biāo);

          (2)若直線y=kx+d經(jīng)過(guò)C、M兩點(diǎn),且與x軸交于點(diǎn)D,試證明四邊形CDAN是平行四邊形;

          (3)點(diǎn)P是這個(gè)二次函數(shù)的對(duì)稱(chēng)軸上一動(dòng)點(diǎn),請(qǐng)?zhí)剿鳎菏欠翊嬖谶@樣的點(diǎn)P,使以點(diǎn)P為圓心的圓經(jīng)過(guò)A、B兩點(diǎn),并且與直線CD相切?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

          【答案】(1)y=﹣x2+2x+3,頂點(diǎn)M(1,4),點(diǎn)C(0,3);(2)見(jiàn)解析;

          (3)點(diǎn)P存在,其坐標(biāo)為(1,)或(1,) .

          【解析】

          (1)將點(diǎn)A、B、C的坐標(biāo)代入y=ax2+bx+c中建立方程組,解方程組求得a、b、c的值即可得到所求的解析式,再由所得解析式求出頂點(diǎn)M的坐標(biāo)和點(diǎn)C的坐標(biāo)即可;

          (2)根據(jù)(1)中所得點(diǎn)M、C的坐標(biāo)求得直線CM的解析式,即可求得點(diǎn)D的坐標(biāo),然后結(jié)合已知條件證得CD=AN,AD=CN,即可證得四邊形CDAN是平行四邊形;

          (3)如下圖,若圓P過(guò)A、B兩點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(1,y0),過(guò)點(diǎn)PPQ⊥CM于點(diǎn)M,則當(dāng)PQ=PA時(shí),圓P和直線CM相切,由此結(jié)合已知條件列出關(guān)于y0的方程,解方程求出y0的值即可得到所求的點(diǎn)P的坐標(biāo).

          (1)∵二次函數(shù)y=ax2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(﹣1,0)、B(3,0)、N(2,3)

          ∴可建立方程組: ,解得: ,

          所求二次函數(shù)的解析式為y=﹣x2+2x+3,

          ∵y=-(x-1)2+4,

          頂點(diǎn)M的坐標(biāo)為:(1,4),

          y=-x2+2x+3中,當(dāng)x=0時(shí),y=3,

          點(diǎn)C的坐標(biāo)為:(0,3)

          (2)∵直線y=kx+d經(jīng)過(guò)C、M兩點(diǎn),

          ,解得:即k=1,d=3,

          直線CM的解析式為y=x+3.

          y=x+3中,當(dāng)y=0時(shí),x=﹣3,

          點(diǎn)D的坐標(biāo)為:(﹣3,0),

          點(diǎn)C、A、N的坐標(biāo)分別為(0,3)、(-1,0)、(2,3),

          ∴CD= ,AN=,AD=2,CN=2,

          ∴CD=AN,AD=CN,

          四邊形CDAN是平行四邊形;

          (3)假設(shè)存在這樣的點(diǎn)P,使以點(diǎn)P為圓心的圓經(jīng)過(guò)A、B兩點(diǎn),并且與直線CD相切,

          二次函數(shù)y=-(x-1)2+4的對(duì)稱(chēng)軸是直線x=1,

          可設(shè)P的坐標(biāo)為:(1,y0),

          ∴PA是圓P的半徑且PA2=y02+22 ,

          如下圖,過(guò)點(diǎn)PPQCDQ,則當(dāng)PQ=PA時(shí),以P為圓心的圓與直線CD相切.

          ∵D、M、E的坐標(biāo)分別為(-3,0)、(1,4)、(1,0),

          ∴DE=ME=4,ME⊥DE,

          ∴△MDE為等腰直角三角形,

          ∴△PQM也是等腰直角三角形,

          由點(diǎn)P的坐標(biāo)為(1,y0可得PE=y0 ,

          PM=|4﹣y0|,

          ,

          PQ2=PA2時(shí)P和直線CM相切,可得方程:

          ,

          解得,

          滿(mǎn)足題意的點(diǎn)P存在,其坐標(biāo)為(1,)或(1,) .

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知甲、乙兩袋中各裝有若干顆球,其種類(lèi)與數(shù)量如表所示今阿馮打算從甲袋中抽出一顆球,小潘打算從乙袋中抽出一顆球,若甲袋中每顆球被抽出的機(jī)會(huì)相等,且乙袋中每顆球被抽出的機(jī)會(huì)相等,則下列敘述何者正確?( )

          甲袋

          乙袋

          紅球

          2

          4

          黃球

          2

          2

          綠球

          1

          4

          總計(jì)

          5

          10

          A. 阿馮抽出紅球的機(jī)率比小潘抽出紅球的機(jī)率大

          B. 阿馮抽出紅球的機(jī)率比小潘抽出紅球的機(jī)率小

          C. 阿馮抽出黃球的機(jī)率比小潘抽出黃球的機(jī)率大

          D. 阿馮抽出黃球的機(jī)率比小潘抽出黃球的機(jī)率小

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在ABC中,ADBCEF垂直平分AC,交AC于點(diǎn)F,交BC于點(diǎn)E,且BD=DE

          1)若C=40°,求BAD的度數(shù);

          2)若AC=5,DC=4,求ABC的周長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】CD是線段AB的垂直平分線,則∠CAD=CBD.請(qǐng)說(shuō)明理由.

          解:∵CD是線段AB的垂直平分線(已知),

          AC=______,______=BD______

          ADC______中,

          ______=BC,

          AD=______,

          CD=____________),

          __________________  ).

          ∴∠CAD=CBD (全等三角形的對(duì)應(yīng)角相等).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,矩形ABCD中,∠ABD、CDB的平分線BE、DF分別交邊AD、BC于點(diǎn)E、F.

          (1)求證:四邊形BEDF是平行四邊形;

          (2)當(dāng)∠ABE為多少度時(shí),四邊形BEDF是菱形?請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】國(guó)學(xué)經(jīng)典進(jìn)校園,傳統(tǒng)文化潤(rùn)心靈,某校開(kāi)設(shè)了“圍棋入門(mén)”、“詩(shī)歌漢字”、“翰墨飄香”、“史學(xué)經(jīng)典”四門(mén)拓展課(每位學(xué)生必須且只選其中一門(mén)).

          (1)學(xué)校對(duì)八年級(jí)部分學(xué)生進(jìn)行選課調(diào)查,

          得到如圖所示的統(tǒng)計(jì)圖,請(qǐng)估計(jì)該校八年級(jí)420名學(xué)生選“詩(shī)歌漢字”的人數(shù).

          (2)“翰墨飄香”書(shū)畫(huà)社的甲、乙、丙三人的書(shū)法水平相當(dāng),學(xué)校決定從這三名同學(xué)中任選兩名參加市書(shū)法比賽,求甲和乙被選中的概率.(要求列表或畫(huà)樹(shù)狀圖)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】1)因式分解:-28m3n2+42m2n3-14m2n

          2)因式分解:9a2x-y+4b2y-x

          3)求不等式的負(fù)整數(shù)解

          4)解不等式組,把它們的解集在數(shù)軸上表示出來(lái).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某中學(xué)九年級(jí)甲、乙兩班分別選5名同學(xué)參加奮發(fā)向上,崇德向善演講比賽,其預(yù)賽成績(jī)?nèi)鐖D所示:

          (1)根據(jù)上圖填寫(xiě)下表:

          (2)根據(jù)上表數(shù)據(jù),分別從平均數(shù)、中位數(shù)、眾數(shù)、方差的角度分析哪班的成績(jī)較好.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】RtABO中,∠AOB=90°,OA=,OB=4,分別以OA、OB邊所在的直線建立平面直角坐標(biāo)系,Dx軸正半軸上一點(diǎn),以OD為一邊在第一象限內(nèi)作等邊ODE.

          (1)如圖①,當(dāng)E點(diǎn)恰好落在線段AB上時(shí),求E點(diǎn)坐標(biāo);

          (2)在()問(wèn)的條件下,將ODE沿x軸的正半軸向右平移得到O′D′E′,O′E′、D′E′分別交AB于點(diǎn)G、F(如圖②)求證OO′=E′F;

          (3)若點(diǎn)D沿x軸正半軸向右移動(dòng),設(shè)點(diǎn)D到原點(diǎn)的距離為x,ODEAOB重疊部分的面積為y,請(qǐng)直接寫(xiě)出yx的函數(shù)關(guān)系式.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案