日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知:如圖,等腰梯形ABCD的邊BC在x軸上,點A在y軸的正方向上,A(0,6),D(4,6),且AB=
          (1)求點B的坐標(biāo);
          (2)求經(jīng)過A、B、D三點的拋物線的解析式;
          (3)點C是不是也在(2)中的拋物線上,若在請證明,若不在請說明理由;
          (4)在(2)中所求的拋物線上是否存在一點P,使得?若存在,請求出該點坐標(biāo),若不存在,請說明理由.

          【答案】分析:(1)根據(jù)勾股定理求出BO即可;
          (2)把A、B、D的坐標(biāo)代入拋物線的解析式得到方程組,求出方程組的解即可;
          (3)求出C的坐標(biāo),把C的坐標(biāo)代入拋物線的解析式看左、右兩邊是否相等即可;
          (4)過點D作DE⊥X軸于點E,根據(jù)勾股定理求出DE,求出BC,根據(jù)梯形面積公式求出梯形的面積,求出△PBC的面積,設(shè)點P的坐標(biāo)為(x,y),則△PBC的BC邊上的高為|y|,求出P的縱坐標(biāo),代入拋物線求出P的橫坐標(biāo)即可.
          解答:解:(1)在Rt△ABO中,AB=2,AO=6,
          ∴BO==2,
          ∵點B在x軸的負(fù)半軸上,
          ∴B(-2,0),
          答:點B的坐標(biāo)是(-2,0).

          (2)設(shè)經(jīng)過A、B、D三點的拋物線的解析式為y=ax2+bx+c,
          代入得:
          解這個方程組得:
          ∴y=-x2+2x+6.
          答:經(jīng)過A、B、D三點的拋物線的解析式是y=-x2+2x+6.

          (3)由題意,得點C的坐標(biāo)為(6,0),
          =0,
          ∴點C在拋物線y=-x2+2x+6上.

          (4)∵A(0,6),D(4,6),
          ∴AD=4,
          過點D作DE⊥X軸于點E,則四邊形DEOA是矩形,有DE=OA=6,AD=OE=4,
          ∵四邊形ABCD是等腰梯形,
          ∴CD=AB=2
          由勾股定理得:CE===2,
          ∴OC=2+4=6,
          ∴C(6,0),
          ∵B(-2,0),
          ∴BC=8,
          ∴梯形ABCD的面積是×(4+8)×6=36,
          ,
          ∴S△PBC=18,
          設(shè)點P的坐標(biāo)為(x,y),則△PBC的BC邊上的高為|y|,
          ×8×|y|=18,
          ∴y=±,
          ∴P的坐標(biāo)是P1(x,),P2(x,-),
          代入拋物線得:-x2+2x+6=-
          ∴x1=-3,x2=7,
          點P1的坐標(biāo)為(-3,-),(7,-),
          同理可求得:點P2的坐標(biāo)為(2+),(2-,).
          答:點P的坐標(biāo)是(-3,-),(7,-),(2+,),(2-,).
          點評:本題主要考查對二次函數(shù)圖象上點的坐標(biāo)特征,平行四邊形的性質(zhì)和判定,三角形的面積,等腰梯形的性質(zhì),解一元二次方程等知識點的理解和掌握,綜合運用這些性質(zhì)進行計算是解此題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

          閱讀材料:如圖在四邊形ABCD中,對角線AC⊥BD,垂足為P.
          求證:S四邊形ABCD=
          1
          2
          AC•BD.
          證明:AC⊥BD?
          S△ACD=
          1
          2
          AC•PD
          S△ABC=
          1
          2
          AC•BP

          ∴S四邊形ABCD=S△ACD+S△ACB=
          1
          2
          AC•PD+
          1
          2
          AC•BP
          =
          1
          2
          AC(PD+PB)=
          1
          2
          AC•B D
          解答問題:
          (1)上述證明得到的性質(zhì)可敘述為
           
          ;
          (2)已知:如圖,等腰梯形ABCD中,AD∥BC,對角線AC⊥BD且相交于點P,AD=3cm,BC=7cm,利用上述的性質(zhì)求梯形的面積.
          精英家教網(wǎng)精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知:如圖,等腰梯形ABCD中,AB=CD,AD∥BC,E是梯形外一點,且EA=ED,求證:EB=EC.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          20、已知:如圖,等腰梯形ABCD中,AB∥DC,E為DC的中點,求證:∠EAB=∠EBA.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2007•昌平區(qū)二模)已知:如圖,等腰梯形ABCD中,AD∥BC,BD平分∠ABC,∠A=120°,BD=4
          3

          (1)求證:AB=AD;
          (2)求△BCD的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知,如圖,等腰梯形ABCD中,AB∥CD,對角線AC⊥BD于O,BC=13
          2
          ,如果AB=a,CD=b,a+b=34,則a=
          24
          24
          b=
          10
          10

          查看答案和解析>>

          同步練習(xí)冊答案