日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,EABCD的邊CD的中點(diǎn),延長(zhǎng)AEBC的延長(zhǎng)線于點(diǎn)F.

          (1)求證:ADE≌△FCE.

          (2)若∠BAF=90°,BC=5,EF=3,求CD的長(zhǎng).

          【答案】1)證明過(guò)程見(jiàn)解析;(28.

          【解析】試題分析:(1)由平行四邊形的性質(zhì)得出AD∥BC,AB∥CD,證出∠DAE=∠F,∠D=∠ECF,由AAS證明△ADE≌△FCE即可;(2)由全等三角形的性質(zhì)得出AE=EF=3,由平行線的性質(zhì)證出∠AED=∠BAF=90°,由勾股定理求出DE,即可得出CD的長(zhǎng).

          試題解析:(1四邊形ABCD是平行四邊形, ∴AD∥BCAB∥CD,

          ∴∠DAE=∠F∠D=∠ECF, ∵EABCD的邊CD的中點(diǎn), ∴DE=CE,

          △ADE△FCE中,,∴△ADE≌△FCEAAS);

          2∵ADE≌△FCE∴AE=EF=3, ∵AB∥CD, ∴∠AED=∠BAF=90°

          ABCD中,AD=BC=5, ∴DE===4∴CD=2DE=8

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為進(jìn)一步建設(shè)秀美、宜居的生態(tài)環(huán)境,某村欲購(gòu)買甲、乙、丙三種樹(shù)美化村莊,已知甲、乙丙三種樹(shù)的價(jià)格之比為2:2:3,甲種樹(shù)每棵200元,現(xiàn)計(jì)劃用210000元資金,購(gòu)買這三種樹(shù)共1000棵

          1求乙、丙兩種樹(shù)每棵各多少元?

          2若購(gòu)買甲種樹(shù)的棵樹(shù)是乙種樹(shù)的2倍,恰好用完計(jì)劃資金,求這三種樹(shù)各能購(gòu)買多少棵?

          3若又增加了10120元的購(gòu)樹(shù)款,在購(gòu)買總棵樹(shù)不變的前提下,求丙種樹(shù)最多可以購(gòu)買多少棵?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知:如圖,在正方形ABCD中,GCD上一點(diǎn),延長(zhǎng)BCE,使CE=CG,連接BG并延長(zhǎng)交DEF.

          (1)求證:△BCG≌△DCE;

          (2)將△DCE繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到△DAE′,判斷四邊形E′BGD是什么特殊四邊形,并說(shuō)明理由。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,若正方形EFGH由正方形ABCD繞某點(diǎn)旋轉(zhuǎn)得到,則可以作為旋轉(zhuǎn)中心的是(
          A.M或O或N
          B.E或O或C
          C.E或O或N
          D.M或O或C

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】問(wèn)題情景:

          如圖1,AB//CD,PAB=130°,PCD=120°,求∠APC的度數(shù).

          小明的思路是:

          過(guò)點(diǎn)PPE//AB,

          ∴∠PAB+APE=180°.

          ∵∠PAB=130°,∴∠APE=50°

          AB//CD,PE//AB,PE//CD,

          ∴∠PCD+CPE=180°.

          ∵∠PCD=120°,∴∠CPE=60°

          ∴∠APC=APE+CPE=110°.

          問(wèn)題遷移:

          如果ABCD平行關(guān)系不變,動(dòng)點(diǎn)P在直線AB、CD所夾區(qū)域內(nèi)部運(yùn)動(dòng)時(shí),∠PAB,PCD的度數(shù)會(huì)跟著發(fā)生變化.

          (1)如圖3,當(dāng)動(dòng)點(diǎn)P運(yùn)動(dòng)到直線AC右側(cè)時(shí),請(qǐng)寫(xiě)出∠PAB,PCD和∠APC之間的數(shù)量關(guān)系?并說(shuō)明理由.

          (2)如圖4,AQ,CQ分別平分∠PAB,PCD,那么∠AQC和角∠APC有怎擇的數(shù)量關(guān)系?

          (3)如圖5,點(diǎn)P在直線AC的左側(cè)時(shí),AQ,CQ仍然平分∠PAB,PCD,請(qǐng)直接寫(xiě)出AQC和角∠APC的數(shù)量關(guān)系

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知反比例函數(shù)y= (x>0)的圖象與一次函 數(shù)y=﹣x+b的圖象分別交于A(1,3)、B兩點(diǎn).

          (1)求m、b的值;
          (2)若點(diǎn)M是反比例函數(shù)圖象上的一動(dòng)點(diǎn),直線MC⊥x軸于C,交直線AB于點(diǎn)N,MD⊥y軸于D,NE⊥y軸于E,設(shè)四邊形MDOC、NEOC的面積分別為S1、S2 , S=S2﹣S1 , 求S的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】同慶中學(xué)為豐富學(xué)生的校園生活,準(zhǔn)備從軍躍體育用品商店一次性購(gòu)買若干個(gè)足球和籃球(每個(gè)足球的價(jià)格相同,每個(gè)籃球的價(jià)格相同),若購(gòu)買3個(gè)足球和2個(gè)籃球共需310元,購(gòu)買2個(gè)足球和5個(gè)籃球共需500元.

          (1)購(gòu)買一個(gè)足球、一個(gè)籃球各需多少元?

          (2)根據(jù)同慶中學(xué)的實(shí)際情況,需從軍躍體育用品商店一次性購(gòu)買足球和籃球共96個(gè),要求購(gòu)買足球和籃球的總費(fèi)用不超過(guò)5720元,這所中學(xué)最多可以購(gòu)買多少個(gè)籃球?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在△ABC中,AB=AC,BD平分∠ABCAC于點(diǎn)D,AE∥BDCB的延長(zhǎng)線于點(diǎn)E.若∠E=35°,則∠BAC的度數(shù)為( 。

          A. 40° B. 45° C. 60° D. 70°

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,⊙O是△ABC的外接圓,∠BAC=60°,若⊙O的半徑OC為2,則弦BC的長(zhǎng)為(
          A.1
          B.
          C.2
          D.2

          查看答案和解析>>

          同步練習(xí)冊(cè)答案