【題目】如圖,三孔橋橫截面的三個(gè)孔都呈拋物線形,兩小孔形狀、大小都相同,正常水位時(shí),大孔水面寬度AB=20m,頂點(diǎn)M距水面6m(即MO=6m),小孔頂點(diǎn)N距水面4.5m(即NC=4.5m),當(dāng)水位上漲剛好淹沒小孔時(shí),借助圖中的直角坐標(biāo)系,求此時(shí)大孔的水面寬度EF.
【答案】水面寬度為10m
【解析】試題分析:設(shè)大孔拋物線的解析式為一般式形式,把點(diǎn)A(-10,0)代入解析式解得a=
,因此函數(shù)解析式為
,再由NC=4.5,可知點(diǎn)E,F的縱坐標(biāo),代入解析式即可求出點(diǎn)E,F的橫坐標(biāo),繼而可以求出EF.
試題解析:設(shè)拋物線的解析式為y=ax2+6,依題意得:B(10,0),
∴a×102+6=0,解得a=-0.06,即y=-0.06x2+6,
當(dāng)y=4.5時(shí),-0.06x2+6=4.5,解得x=±5,
∴DF=5,EF=10,即水面寬度為10m.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC和△BDE都是等邊三角形,且A,E,D三點(diǎn)在一直線上.請(qǐng)你說(shuō)明DA﹣DB=DC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線AB與x軸交于點(diǎn)A(1,0),與y軸交于點(diǎn)B(0,-2).
(1)求直線AB的表達(dá)式;
(2)若直線AB上有一動(dòng)點(diǎn)C,且,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在同一直角坐標(biāo)系中,函數(shù)y=kx+1與y=﹣(k≠0)的圖象大致是( 。
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)解分式方程;
(2)已知(x2+px+q)(x2﹣3x+2)中,不含x3項(xiàng)和x項(xiàng),求p,q的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先閱讀下面的解題過(guò)程,再解答問題:
如圖①,已知AB∥CD,∠B=40°,∠D=30°,求∠BED的度數(shù).
解:過(guò)點(diǎn)E作EF∥AB,則AB∥CD∥EF,
因?yàn)?/span>EF∥AB,所以∠1=∠B=40°
又因?yàn)?/span>CD∥EF,所以∠2=∠D=30°
所以∠BED=∠1+∠2=40°+30°=70°.
如圖②是小軍設(shè)計(jì)的智力拼圖玩具的一部分,現(xiàn)在小軍遇到兩個(gè)問題,請(qǐng)你幫他解決:
(1)如圖②∠B=45°,∠BED=75°,為了保證AB∥CD,∠D必須是多少度?請(qǐng)寫出理由.
(2)如圖②,當(dāng)∠G、∠GFP、∠P滿足什么關(guān)系時(shí),GH∥PQ,請(qǐng)直接寫出滿足關(guān)系的式子,并在如圖②中畫出需要添加的輔助線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一次函數(shù)與反比例函數(shù)
的圖像相交于點(diǎn)
,與
軸相交于點(diǎn)
.
(1)填空:的值為 ,
的值為 ;
(2)觀察反比函數(shù)的圖像,當(dāng)
時(shí),請(qǐng)直接寫出自變量
的取值范圍;
(3)以為邊作菱形
,使點(diǎn)
在
軸負(fù)半軸上,點(diǎn)
在第二象限內(nèi),求點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一塊長(zhǎng)為22 m,寬為17 m的矩形地面上,要修建同樣寬的兩條互相垂直的道路(兩條道路各與矩形的一條邊平行),剩余部分種上草坪,使草坪面積為300 m2.若設(shè)道路寬為x m,根據(jù)題意可列出方程為______________________________.
【答案】(22-x)(17-x)=300(或x2-39x+74=0)
【解析】試題分析:把所修的兩條道路分別平移到矩形的最上邊和最左邊,則剩下的草坪是一個(gè)長(zhǎng)方形,根據(jù)長(zhǎng)方形的面積公式列方程.設(shè)道路的寬應(yīng)為x米,由題意有(22﹣x)(17﹣x)=300,故答案為:(22﹣x)(17﹣x)=300.
考點(diǎn):由實(shí)際問題抽象出一元二次方程.
【題型】填空題
【結(jié)束】
17
【題目】x=1是關(guān)于x的一元二次方程x2+mx﹣5=0的一個(gè)根,則此方程的另一個(gè)根是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)的坐標(biāo)為
,將點(diǎn)
向右平移
個(gè)單位得到點(diǎn)
,其中關(guān)于
的一元一次不等式
的解集為
,過(guò)點(diǎn)
作
軸于
.
(1)求兩點(diǎn)坐標(biāo)及四邊形
的面積;
(2)如圖2,點(diǎn)自
點(diǎn)以1個(gè)單位/秒的速度在
軸上向上運(yùn)動(dòng),點(diǎn)
自
點(diǎn)以2個(gè)單位/秒的速度在
軸上向左運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為
秒(
),是否存在一段時(shí)間使得
,若存在,求出
的取值范圍;若不存在,說(shuō)明理由;
(3)在(2)的條件下,求四邊形的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com