日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,將放在平面直角坐標系中,點,點,點動點從點開始沿邊向點1個單位長度的速度運動,同一時間,動點從點開始沿邊向點以每秒2個單位長度的速度運動,當其中一點到達端點時,另一點也隨之停止運動.過點,交于點,連接,設(shè)運動時間為(t.

          (Ⅰ)用含的代數(shù)式表示;

          (Ⅱ)①是否存在的值,使四邊形為平行四邊形?若存在,求出的值;若不存在,說明理由;

          ②是否存在的值,使四邊形為菱形?若存在,求出的值;若不存在,說明理由.

          (Ⅲ)在整個運動過程中,求出線段的中點所經(jīng)過的路徑長.(直接寫出結(jié)果即可).

          【答案】(Ⅰ);(Ⅱ)①存在,;②不存在,四邊形不能為菱形,見解析;(Ⅲ)線段中點所經(jīng)過的路徑長為.

          【解析】

          (Ⅰ)根據(jù)題意得到OQ=2t,AP=t,求出BQ=8-2t,證明ADP∽△ABO,根據(jù)相似三角形的性質(zhì)求出PD;
          (Ⅱ)①根據(jù)平行四邊形的判定方法得出BQ=DP,列出關(guān)于t的方程,解方程即可;②先根據(jù)勾股定理得出AB的長,再根據(jù)平行線分線段成比例定理可得AD=,,根據(jù)①中是平行四邊形時t的值求出PDBD的值即可判定.

          (Ⅲ)根據(jù)點QBO上運動,點PAO上運動,得出線段PQ的中點M的運動路徑為一條線段,確定點Q分別與點O、點B重合時PQ的中點M的位置,再進一步求解可得.

          解:(I)∵點,點

          , ,

          且由題意, , ,

          ,

          , ,

          .

          (Ⅱ)①∵,若,

          ∴則四邊形是平行四邊形,

          ,解得:.

          ∴當時,∴四邊形為平行四邊形.

          ②不存在,理由如下:

          ,

          ∴在中, ,

          ,∴,,

          ∴當,四邊形為平行四邊形時,

          ,

          ∴四邊形PDBC不能為菱形.

          (Ⅲ))∵點QBO上運動,點PAO上運動,

          ∴線段PQ的中點M的運動路徑為一條線段,

          ∵當Q在點O時,點P在點A處,
          ∵點M為PQ的中點

          OM=PQ=
          ∵當Q在點B時,AP=4,則OP=2

          此時,連接PQ,取PQ的中點,過OAE

          OE=1,
          EM=2,
          AOBO、EOA,
          EBO,
          PQ的中點,
          EBOP的中位線,
          E=BO=4,
          M的運動路徑為M==2

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標系中,矩形AOCB的兩邊OA、OC分別在x軸和y軸上,且OA=2,OC=1.在第二象限內(nèi),將矩形AOCB以原點O為位似中心放大為原來的倍,得到矩形A1OC1B1,再將矩形A1OC1B1以原點O為位似中心放大倍,得到矩形A2OC2B2…,以此類推,得到的矩形AnOCnBn的對角線交點的坐標為

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知二次函數(shù)的圖象經(jīng)過點A-3,6),并與x軸交于點B-1,0)和點C,頂點為點P

          1)求這個二次函數(shù)解析式;

          2)設(shè)Dx軸上一點,滿足∠DPC=BAC,求點D的坐標;

          3)作直線AP,在拋物線的對稱軸上是否存在一點M,在直線AP上是否存在點N,使AM+MN的值最。咳舸嬖,求出MN的坐標:若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】第一個盒子中有2個白球,1個黃球,第二個盒子中有1個白球,1個黃球,這些球除顏色外都相同,分別從每個盒中隨機取出一個球.

          1)求取出的兩個球中一個是白球,一個是黃球的概率;

          2)若第一個盒子中有2個白球,1個黃球,第二個盒子中有1個白球,1個黃球,其他條件不變,則取出的兩個球都是黃球的概率為________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格中,有,點都在格點上

          I的面積等于__________

          (Ⅱ)求作其內(nèi)接正方形,使其一邊在上,另兩個頂點各在上在如圖所示的網(wǎng)格中,請你用無刻度的直尺畫出該正方形,并簡要說明畫圖的方法(不要求證明)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某校為選拔一名選手參加美麗邵陽,我為家鄉(xiāng)做代言主題演講比賽,經(jīng)研究,按圖所示的項目和權(quán)數(shù)對選拔賽參賽選手進行考評(因排版原因統(tǒng)計圖不完整).下表是李明、張華在選拔賽中的得分情況:

          項目

          選手

          服裝

          普通話

          主題

          演講技巧

          李明

          85

          70

          80

          85

          張華

          90

          75

          75

          80

          結(jié)合以上信息,回答下列問題:

          (1)求服裝項目的權(quán)數(shù)及普通話項目對應(yīng)扇形的圓心角大;

          (2)求李明在選拔賽中四個項目所得分數(shù)的眾數(shù)和中位數(shù);

          (3)根據(jù)你所學(xué)的知識,幫助學(xué)校在李明、張華兩人中選擇一人參加美麗邵陽,我為家鄉(xiāng)做代言主題演講比賽,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,AB為⊙O直徑,P點為半徑OA上異于O點和A點的一個點,過P點作與直徑AB垂直的弦CD,連接AD,作BEAB,OEADBEE點,連接AE、DE、AECDF點.

          (1)求證:DE為⊙O切線;

          (2)若⊙O的半徑為3,sinADP=,求AD;

          (3)請猜想PFFD的數(shù)量關(guān)系,并加以證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某個周末,小麗從家去園博園參觀,同時媽媽參觀結(jié)束從園博園回家,小麗剛到園博園就發(fā)現(xiàn)要下雨,于是立即按原路返回,追上媽媽后,兩人一同回家(小麗和媽媽始終在同一條筆直的公路上行走)如圖是兩人離家的距離y()與小麗出發(fā)的時間x()之間的函數(shù)圖象,請根據(jù)圖象信息回答下列問題:

          (1)求線段BC的解析式;

          (2)求點F的坐標,并說明其實際意義;

          (3)與按原速度回家相比,媽媽提前了幾分鐘到家?并直接寫出小麗與媽媽何時相距800米.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,ABO的直徑,EDO于點CADO于點F,連接AC,BF,且BFCD

          1)求證:AC平分∠BAD;

          2)若O的半徑為AF2,求CD的長度.

          查看答案和解析>>

          同步練習(xí)冊答案