日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2012•市中區(qū)二模)(1)已知:如圖1,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D為AB邊上一點.求證:△ACE≌△BCD
          (2)某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,圖2是水平放置的破裂管道有水部分的截面.若這個輸水管道有水部分的水面寬AB=16cm,水面最深地方的高度為4cm,求這個圓形截面的半徑.
          分析:(1)先根據(jù)∠ACB=∠DCE可得出∠BCD=∠ACE,由SAS定理可知△BCD≌△ACE;
          (2)假設(shè)O為圓形截面所在圓的圓心過O作OC⊥AB于D,交AB于C,由垂徑定理可得出BD,CD的長,設(shè)半徑為xcm,在Rt△BOD利用勾股定理即可得出x的值.
          解答:證明:(1)∵∠ACB=∠DCE,
          ∴∠ACD+∠BCD=∠ACD+∠ACE,即∠BCD=∠ACE.
          ∵BC=AC,DC=EC,
          ∴△BCD≌△ACE.

          (2)解:假設(shè)O為圓形截面所在圓的圓心過O作OC⊥AB于D,交AB于C,
          ∵OC⊥AB,
          BD=
          1
          2
          AB=
          1
          2
          ×16=8cm

          由題意可知,CD=4cm. 
          設(shè)半徑為xcm,則OD=(x-4)cm.
          在Rt△BOD中,由勾股定理得:OD2+BD2=OB2
          ∴(x-4)2+82=x2
          ∴x=10.即這個圓形截面的半徑為10cm.
          點評:本題考查的是垂徑定理的應(yīng)用,全等三角形的判定定理及勾股定理,解答此類問題的關(guān)鍵是根據(jù)題意作出輔助線,構(gòu)造出直角三角形,利用勾股定理求解.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•市中區(qū)二模)據(jù)2013年4月1日《CCTV-10講述》欄目報道,2012年7月11日,一位26歲的北京小伙樊蒙,推著坐在輪椅上的母親,開始從北京到西雙版納的徒步旅行,圓了母親的旅游夢,歷時93天,行程3 359公里.請把3 359用科學(xué)記數(shù)法表示應(yīng)為(  )

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•市中區(qū)三模)如圖是某商場一樓與二樓之間的手扶電梯示意圖.其中AB、CD分別表示一樓、二樓地面的水平線,∠ABC=150°,BC的長是8m,則乘電梯從點B到點C上升的高度h是( 。

          查看答案和解析>>

          同步練習(xí)冊答案