日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在△ABC中,點B,C是x軸上的兩個定點,∠ACB=90°,AC=BC,點A(l,3),點P是x軸上的一個動點,點E是AB的中點,在△PEF中,∠PEF=90°,PE=EF

          (1)如圖1,當點P與坐標原點重合時:①求證△PCE≌△FBE;②求點F的坐標;
          (2)如圖2,當點P在線段CB上時,求證SCPE=SAEF
          (3)如圖3,當點P在線段CB的延長線時,若SAEF=4SPBE則此刻點F的坐標為

          【答案】
          (1)

          證明:如圖1中,

          ①∵A(1,3),B(4,0),

          ∴AC=BC=3,△ACB是等腰直角三角形,

          ∵AE=EB,

          ∴CE=AE=EB,CE⊥AB,∠ECB=∠EBC=45°,

          ∴∠CEB=∠OEF=90°,∠ECO=135°,

          ∴∠OEC=∠FEB,∵OE=EF,EC=EB,

          ∴△EOC≌△EFB,即△PCE≌△FBE..

          ②∵△PCE≌△FBE.

          ∴OC=BF=1,∠EBF=∠OCE=135°,

          ∴∠OBF=90°,

          ∴BF⊥OB,

          ∴F(4,﹣1)


          (2)

          證明:如圖2中,作PM⊥CE于M,F(xiàn)N⊥EB于N.

          由(1)可知∠OEC=∠FEB,OE=EF,EC=EB,

          ∴△ECP≌△EBF,

          ∵PM⊥CE于M,F(xiàn)N⊥EB于N,

          ∴PM=FN(全等三角形對應邊上的高相等),

          ∵SCPE= CEPM,SAEF= AEFN,

          ∵CE=AE,PM=NF,

          ∴SCPE=SAEF


          (3)(4,4)
          【解析】(3)解:如圖3中,

          由(2)可知△ECP≌△EBF,推出PC=BF,BF⊥CP,
          ∵SCPE=SAEF , SAEF=4SPBE ,
          ∴SCPE=4SPBE ,
          ∴PC=4PB,
          ∴BC=3PB,PB=1,PC=4,
          ∴BF=PC=4,
          ∴點F坐標為(4,4).
          所以答案是(4,4).
          【考點精析】解答此題的關鍵在于理解全等三角形的性質的相關知識,掌握全等三角形的對應邊相等; 全等三角形的對應角相等.

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】已知:如圖,B,C兩點把線段AD分成2:4:3三部分,M是AD的中點,CD=6cm,則線段MC的長為

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】計算(-3xy2)·(2y2-xyz+1)的結果是(

          A. -3xy4+32y3+3xy2 B. -6xy4+3x2y3z-3xy2

          C. -6xy4-3x2y3z-3xy2 D. -6xy4+3x2y2z

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知二次函數(shù)yax2-8ax(a<0)的圖像與x軸的正半軸交于點A,它的頂點為P.點Cy軸正半軸上一點,直線AC與該圖像的另一交點為B,與過點P且垂直于x軸的直線交于點D,且CBAB=1:7.

          (1)求點A的坐標及點C的坐標(用含a的代數(shù)式表示);

          (2)連接BP,若△BDP與△AOC相似(點O為原點),求此二次函數(shù)的關系式.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】閱讀理解:小明熱愛數(shù)學,在課外書上看到了一個有趣的定理——“中線長定理”:三角形兩邊的平方和等于第三邊的一半與第三邊上的中線的平方和的兩倍.如圖1,在△ABC中,點DBC的中點,根據(jù)“中線長定理”,可得:

          AB2AC2=2AD2+2BD2

          小明嘗試對它進行證明,部分過程如下:

          解:過點AAEBC于點E,如圖2,在Rt△ABE中,AB2AE2BE2,

          同理可得:AC2AE2CE2,AD2AE2DE2,

          為證明的方便,不妨設BDCDx,DEy

          AB2AC2AE2BE2AE2CE2=……

          (1)請你完成小明剩余的證明過程;

          理解運用:

          (2) ① 在△ABC中,點DBC的中點,AB=6,AC=4,BC=8,則AD=_______;

          ② 如圖3,⊙O的半徑為6,點A在圓內,且OA=2,點B和點C在⊙O上,且∠BAC=90°,點EF分別為AO、BC的中點,則EF的長為________;

          拓展延伸:

          (3)小明解決上述問題后,聯(lián)想到《能力訓練》上的題目:如圖4,已知⊙O的半徑為5,以A(3,4)為直角頂點的△ABC的另兩個頂點B,C都在⊙O上,DBC的中點,求AD長的最大值.請你利用上面的方法和結論,求出AD長的最大值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】下列多項式的乘法中,能用平方差公式計算的是( )
          A.(-m +n)(m - n)
          B.( a +b)(b - a)
          C.(x + 5)(x + 5)
          D.(3a -4b)(3b +4a)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】在一張足夠大的紙板上截取一個面積為3600平方厘米的矩形紙板ABCD,如圖1,再在矩形紙板的四個角上切去邊長相等的小正方形,再把它的邊沿虛線折起,做成一個無蓋的長方體紙盒,底面為矩形EFGH,如圖2.設小正方形的邊長為x厘米.

          (1)當矩形紙板ABCD的一邊長為90厘米時,求紙盒的側面積的最大值;

          (2)當EHEF=7:2,且側面積與底面積之比為9:7時,求x的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】計算:(-2xy)(3x2y-2x+1)=_________

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】某招聘考試分筆試和面試兩種,其中筆試按60%、面試按40%計算加權平均數(shù),作為總成績.孔明筆試成績90分,面試成績85分,那么孔明的總成績是   分.

          查看答案和解析>>

          同步練習冊答案