日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,△OAB的一邊OB在x軸的正半軸上,點(diǎn)A的坐標(biāo)為(6,8),OA=OB,點(diǎn)P在線段OB上,點(diǎn)Q在y軸的正半軸上,OP=2OQ,過點(diǎn)Q作x軸的平行線分別交OA,AB于點(diǎn)E,F(xiàn).

          (1)求直線AB的解析式;
          (2)若四邊形POEF是平行四邊形,求點(diǎn)P的坐標(biāo);
          (3)是否存在點(diǎn)P,使△PEF為直角三角形?若存在,請直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

          【答案】
          (1)

          解:∵A(6,8),∴OA= =10,

          ∴OB=OA=10,即B(10,0),

          設(shè)直線AB解析式為y=kx+b,

          把A與B坐標(biāo)代入得: ,

          解得:k=﹣2,b=20.

          則直線AB解析式為y=﹣2x+20


          (2)

          解:由A(6,8),得到直線OA解析式為y= x,

          設(shè)OQ=t,則有OP=2OQ=2t,

          把y=t代入y= x得:x= t;代入y=﹣2x+20得:x=10﹣ t,

          ∴E( t,t),F(xiàn)(10﹣ t,t),

          ∴EF=10﹣ t﹣ t=10﹣ t,

          若四邊形POEF為平行四邊形,則有EF=OP,即10﹣ t=2t,

          解得:t=


          (3)

          解:分三種情況考慮:

          若∠PEF=90°,則有 t=2t,無解,不可能;

          若∠PFE=90°,則有10﹣ =2t,解得:t=4,此時OP=8,即P(8,0);

          若∠EPF=90°,過E、F分別作x軸垂線,垂足分別為G、H,

          ∴Rt△EGP∽Rt△PHF,

          = ,即 = ,

          解得:t= ,此時P= ,即P( ,0).

          綜上,P的坐標(biāo)為(8,0)或( ,0)


          【解析】(1)由A坐標(biāo)確定出OA的長,即為OB的長,確定出B坐標(biāo),利用待定系數(shù)法求出直線AB解析式即可;(2)由A坐標(biāo)確定出直線OA解析式,設(shè)OQ=t,則有OP=2t,表示出E與F坐標(biāo),進(jìn)而表示出EF長,由四邊形POEF為平行四邊形,得到EF=OP,求出t的值,即可確定出P坐標(biāo);(3)分三種情況考慮:若∠PEF=90°;若∠PFE=90°;若∠EPF=90°,過E、F分別作x軸垂線,垂足分別為G、H,分別求出t的值,確定出滿足題意P坐標(biāo)即可.
          【考點(diǎn)精析】認(rèn)真審題,首先需要了解確定一次函數(shù)的表達(dá)式(確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法),還要掌握平行四邊形的性質(zhì)(平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補(bǔ);平行四邊形的對角線互相平分)的相關(guān)知識才是答題的關(guān)鍵.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC內(nèi)依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.則EF等于(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】將邊長為2的正方形OABC如圖放置,O為原點(diǎn).若∠α=15°,則點(diǎn)B的坐標(biāo)為

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,正方形ABCD的邊長為4cm,動點(diǎn)P、Q同時從點(diǎn)A出發(fā),以1cm/s的速度分別沿A→B→C和A→D→C的路徑向點(diǎn)C運(yùn)動,設(shè)運(yùn)動時間為x(單位:s),四邊形PBDQ的面積為y(單位:cm2),則y與x(0≤x≤8)之間函數(shù)關(guān)系可以用圖象表示為( )

          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過坐標(biāo)原點(diǎn),與x軸交于點(diǎn)A(﹣2,0).
          (1)求此二次函數(shù)的解析式;
          (2)在拋物線上有一點(diǎn)P,滿足SAOP=1,請直接寫出點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】唐朝詩人李欣的詩《古從軍行》開頭兩句說:“白日登山望峰火,黃昏飲馬傍交河.”詩中隱含著一個有趣的數(shù)學(xué)問題我們稱之為“飲馬問題”.如圖1所示,詩中將軍在觀望烽火之后從山腳下的A點(diǎn)出發(fā),走到河旁邊的C點(diǎn)飲馬后再到B點(diǎn)宿營.請問怎樣走才能使總的路程最短?某課題組在探究這一問題時抽象出數(shù)學(xué)模型:

          直線l同旁有兩個定點(diǎn)A、B,在直線l上存在點(diǎn)P,使得PA+PB的值最小.

          解法:作點(diǎn)A關(guān)于直線l的對稱點(diǎn)A′,連接A′B,則A′B與直線l的交點(diǎn)即為P,且PA+PB的最小值為線段A′B的長.

          (1)根據(jù)上面的描述,在備用圖中畫出解決“飲馬問題”的圖形;

          (2)利用軸對稱作圖解決“飲馬問題”的依據(jù)是   

          (3)應(yīng)用:如圖2,已知AOB=30°,其內(nèi)部有一點(diǎn)P,OP=12,在AOB的兩邊分別有C、D兩點(diǎn)(不同于點(diǎn)O),使PCD的周長最小,請畫出草圖,并求出PCD周長的最小值;

          如圖3,點(diǎn)A(4,2),點(diǎn)B(1,6)在第一象限,在x軸、y軸上是否存在點(diǎn)D、點(diǎn)C,使得四邊形ABCD的周長最?若存在,請畫出草圖,并求其最小周長;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,△ABC中,∠CAB=65°,在同一平面內(nèi),將△ABC繞點(diǎn)A旋轉(zhuǎn)到△AED的位置,使得DC∥AB,則∠BAE等于(
          A.30°
          B.40°
          C.50°
          D.60°

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)P在直線y=x上運(yùn)動,當(dāng)以點(diǎn)P為圓心,PA的長為半徑的圓的面積最小時,點(diǎn)P的坐標(biāo)為(
          A.(1,﹣1)
          B.(0,0)
          C.(1,1)
          D.( ,

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,△ABC繞點(diǎn)A順時針旋轉(zhuǎn)45°得到△AB′C′,若∠BAC=90°,AB=AC= ,則圖中陰影部分的面積等于

          查看答案和解析>>

          同步練習(xí)冊答案