日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】Rt△ABC中,AB=AC,點DBC中點.∠MDN=900,∠MDN繞點D旋轉(zhuǎn),DM、DN分別與邊AB、AC交于E、F兩點.下列結(jié)論

          ①(BE+CF)=BC,,AD·EF,④AD≥EF,⑤ADEF可能互相平分,

          其中正確結(jié)論的個數(shù)是( )

          A. 1B. 2C. 3D. 4

          【答案】C

          【解析】

          ∵Rt△ABC中,AB=AC,點DBC中點.∠MDN=900,

          ∴AD =DC,∠EAD=∠C=450,∠EDA=∠MDN∠ADN =900∠AND=∠FDC。

          ∴△EDA≌△FDCASA)。∴AE=CF。∴BE+CF=" BE+" AE=AB。

          Rt△ABC中,根據(jù)勾股定理,得AB=BC。∴(BE+CF)=BC。結(jié)論正確。

          設(shè)AB=AC=aAE=b,則AF="BE=" ab

          。

          。結(jié)論正確。

          如圖,過點EEI⊥AD于點I,過點FFG⊥AD于點G,過點FFH⊥BC于點H,ADEF相交于點O。

          四邊形GDHF是矩形,△AEI△AGF是等腰直角三角形,

          ∴EO≥EIEF⊥AD時取等于)=FH=GD,

          OF≥GHEF⊥AD時取等于)=AG

          ∴EF=EOOF≥GDAG=AD。結(jié)論錯誤。

          ∵△EDA≌△FDC,

          。結(jié)論錯誤。

          又當(dāng)EFRt△ABC中位線時,根據(jù)三角形中位線定理知ADEF互相平分。

          結(jié)論正確。

          綜上所述,結(jié)論①②⑤正確。故選C

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在矩形ABCD中,AB,BC3,在BC邊上取兩點E、F(點E在點F的左邊),以EF為邊所作等邊△PEF,頂點P恰好在AD上,直線PE、PF分別交直線AC于點G、H

          1)求△PEF的邊長;

          2)若△PEF的邊EF在線段CB上移動,試猜想:PHBE有何數(shù)量關(guān)系?并證明你猜想的結(jié)論;

          3)若△PEF的邊EF在射線CB上移動(分別如圖和圖所示,CF1,P不與A重合),(2)中的結(jié)論還成立嗎?若不成立,直接寫出你發(fā)現(xiàn)的新結(jié)論.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,已知直線y=x+3x軸交于點A,與y軸交于點B,拋物線y=﹣x2+bx+c經(jīng)過A、B兩點,與x軸交于另一個點C,對稱軸與直線AB交于點E,拋物線頂點為D

          1)求拋物線的解析式;

          2)在第三象限內(nèi),F為拋物線上一點,以A、EF為頂點的三角形面積為3,求點F的坐標(biāo);

          3)點P從點D出發(fā),沿對稱軸向下以每秒1個單位長度的速度勻速運動,設(shè)運動的時間為t秒,當(dāng)t為何值時,以P、BC為頂點的三角形是直角三角形?直接寫出所有符合條件的t值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖(1)將長方形紙片ABCD的一邊CD沿著CQ向下折疊,使點D落在邊AB上的點P處.

          1)試判斷線段CQPD的關(guān)系,并說明理由;

          2)如圖(2),若AB=CD=5,AD=BC=3.求AQ的長;

          3)如圖(2),BC=3,取CQ的中點M,連接MD,PM,若MDPM,求AQAB+BC)的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,點P是⊙O外一點,過點P作⊙O的切線,切點為A,連接PO并延長,交⊙O于B、C兩點.

          (1)求證:△PBA∽△PAC;

          (2)若∠BAP=30°,PB=2,求⊙O的半徑.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知△ABC內(nèi)接于⊙O,AD、AE分別平分∠BAC和△BAC的外角∠BAF,且分別交圓于點D、F,連接DE,CD,DE與BC相交于點G.

          (1)求證:DE是△ABC的外接圓的直徑;

          (2)設(shè)OG=3,CD=,求⊙O的半徑.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形.RtABC的頂點均在格點上,建立平面直角坐標(biāo)系后,點A的坐標(biāo)為(﹣4,1),點B的坐標(biāo)為(﹣1,1).

          (1)先將RtABC向右平移5個單位,再向下平移1個單位后得到RtA1B1C1.試在圖中畫出圖形RtA1B1C1,并寫出A1的坐標(biāo);

          (2)將RtA1B1C1繞點A1順時針旋轉(zhuǎn)90°后得到RtA2B2C2,試在圖中畫出圖形RtA2B2C2.并計算RtA1B1C1在上述旋轉(zhuǎn)過程中C1所經(jīng)過的路程以及RtA1B1C1掃過的面積

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】閱讀下列材料,完成任務(wù):

          自相似圖形

          定義:若某個圖形可分割為若干個都與它相似的圖形,則稱這個圖形是自相似圖形.例如:正方形ABCD中,點E、F、G、H分別是AB、BC、CD、DA邊的中點,連接EG,HF交于點O,易知分割成的四個四邊形AEOH、EBFO、OFCG、HOGD均為正方形,且與原正方形相似,故正方形是自相似圖形.

          任務(wù):

          (1)圖1中正方形ABCD分割成的四個小正方形中,每個正方形與原正方形的相似比為   

          (2)如圖2,已知ABC中,ACB=90°,AC=4,BC=3,小明發(fā)現(xiàn)ABC也是“自相似圖形”,他的思路是:過點C作CDAB于點D,則CD將ABC分割成2個與它自己相似的小直角三角形.已知△ACD∽△ABC,則ACD與ABC的相似比為   ;

          (3)現(xiàn)有一個矩形ABCD是自相似圖形,其中長AD=a,寬AB=b(a>b).

          請從下列A、B兩題中任選一條作答:我選擇   題.

          A:①如圖3﹣1,若將矩形ABCD縱向分割成兩個全等矩形,且與原矩形都相似,則a=   (用含b的式子表示);

          如圖3﹣2若將矩形ABCD縱向分割成n個全等矩形,且與原矩形都相似,則a=   (用含n,b的式子表示);

          B:①如圖4﹣1,若將矩形ABCD先縱向分割出2個全等矩形,再將剩余的部分橫向分割成3個全等矩形,且分割得到的矩形與原矩形都相似,則a=   (用含b的式子表示);

          如圖4﹣2,若將矩形ABCD先縱向分割出m個全等矩形,再將剩余的部分橫向分割成n個全等矩形,且分割得到的矩形與原矩形都相似,則a=   (用含m,n,b的式子表示).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,半圓O的直徑為ABD是半圓上的一個動點(不與點A,B重合),連接BD并延長至點C,使CDBD,連接AC,過點DDEAC于點E

          (1)請猜想DE與⊙O的位置關(guān)系,并說明理由;

          (2)當(dāng)AB=4,BAC=45°時,求DE的長.

          查看答案和解析>>

          同步練習(xí)冊答案