日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知⊙O是△ABC的外接圓,連接OC,過點(diǎn)AADOC,交BC的延長線于D,ABOCE,∠ABC45°

          (1)求證:AD是⊙O的切線;

          (2)AE,CE3

          ①求⊙O的半徑;

          ②求圖中陰影部分的面積.

          【答案】(1)證明見解析;(2)OC=4;(3)圖中陰影部分的面積

          【解析】

          1)連接 ,根據(jù)圓周角定理可知 ,根據(jù)平行線的性質(zhì)即可求出 ,從而可證AD是⊙O的切線

          2)①設(shè) ,根據(jù) ,可知 ,在中,根據(jù)勾股定理可知: ,即可求出半徑的長;

          ②根據(jù)扇形面積公式以及三角形面積公式可求得答案。

          解:(1)連接 ,如下圖所示,

          ,

          ,

          是⊙O的半徑,

          是⊙O的切線,

          2)①設(shè) ,

          ,

          ,

          由于 ,

          中,根據(jù)勾股定理可知:

          ,

          ,

          ,

          ∴圖中陰影部分的面積

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在ABCD中,分別以邊BC,CD作等腰△BCF,CDE,使BC=BF,CD=DE,CBF=CDE,連接AF,AE.

          (1)求證:△ABF≌△EDA;

          (2)延長ABCF相交于G,若AFAE,求證BFBC.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知∠MON30°,BOM上一點(diǎn),BAON于點(diǎn)A,四邊形ABCD為正方形,P為射線BM上一動點(diǎn),連結(jié)CP,將CP繞點(diǎn)C順時針方向旋轉(zhuǎn)90°得CE,連接BE,若AB2,則BE的最小值為( )

          A. +1B. 21C. 3D. 4

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,拋物線yax23a+1x+2a+3a0)與直線yx1交于點(diǎn)A和點(diǎn)B(點(diǎn)A在點(diǎn)B的左側(cè)),AB5

          1)求證:該拋物線必過一個定點(diǎn);

          2)求該拋物線的解析式;

          3)設(shè)直線xm與該拋物線交于點(diǎn)Ex1,y1),與直線AB交于點(diǎn)Fx2y2),當(dāng)滿足y1+y20y1y20時,求m的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:ADABC的高,且BDCD

          (1)如圖1,求證:∠BADCAD;

          (2)如圖2,點(diǎn)EAD上,連接BE,將ABE沿BE折疊得到ABE,ABAC相交于點(diǎn)F,若BEBC,求∠BFC的大小;

          (3)如圖3,在(2)的條件下,連接EF,過點(diǎn)CCGEF,交EF的延長線于點(diǎn)G,若BF=10,EG=6,求線段CF的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知等邊ABC的邊長為8,以AB為直徑的圓交BC于點(diǎn)F.以C為圓心,CF長為半徑作圖,D是⊙C上一動點(diǎn),EBD的中點(diǎn),當(dāng)AE最大時,BD的長為( 。

          A. B. C. D. 12

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】問題發(fā)現(xiàn):

          )如圖①,中,,,點(diǎn)邊上任意一點(diǎn),則的最小值為__________

          )如圖②,矩形中,,,點(diǎn)、點(diǎn)分別在、上,求的最小值.

          )如圖③,矩形中,,,點(diǎn)邊上一點(diǎn),且,點(diǎn)邊上的任意一點(diǎn),把沿翻折,點(diǎn)的對應(yīng)點(diǎn)為點(diǎn),連接,四邊形的面積是否存在最小值,若存在,求這個最小值及此時的長度;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,兩幢建筑物ABCD,ABBD,CDBD,AB=15m,CD=20mABCD之間有一景觀池,小雙在A點(diǎn)測得池中噴泉處E點(diǎn)的俯角為42°,在C點(diǎn)測得E點(diǎn)的俯角為45°,點(diǎn)B、E、D在同一直線上.求兩幢建筑物之間的距離BD.(結(jié)果精確到0.1m)(參考數(shù)據(jù):sin42°=0.67,cos42°=0.74,tan42°=0.90

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某校計劃一次性購買排球和籃球,每個籃球的價格比排球貴30元;購買2個排球和3個籃球共需340元.

          (1)求每個排球和籃球的價格:

          (2)若該校一次性購買排球和籃球共60個,總費(fèi)用不超過3800元,且購買排球的個數(shù)少于39個.設(shè)排球的個數(shù)為m,總費(fèi)用為y元.

          ①求y關(guān)于m的函數(shù)關(guān)系式,并求m可取的所有值;

          ②在學(xué)校按怎樣的方案購買時,費(fèi)用最低?最低費(fèi)用為多少?

          查看答案和解析>>

          同步練習(xí)冊答案