日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在矩形ABCD中,AB=3,BC=4,EF過AC、BD的交點O,則圖中陰影部分的面積為
          3
          3
          分析:易證△AOE≌△COF,則陰影部分的面積為△CDO的面積,根據(jù)矩形對角線分成的四部分面積相等,即可計算陰影部分的面積,即可解題.
          解答:解:∵AD∥BC,
          ∴∠EAO=∠FCO,
          在△AOE和△COF中,
          ∠EAO=∠FCO
          AO=CO
          ∠COF=∠EOA
          ,
          ∴△AOE≌△COF,
          則△AOE和△COF面積相等,
          ∴陰影部分的面積與△CDO的面積相等,
          又∵矩形對角線將矩形分成面積相等的四部分,
          ∴陰影部分的面積為:
          1
          4
          ×3×4=3.
          故答案為:3.
          點評:本題考查了矩形對角線相等且互相平分的性質,考查了矩形面積的計算,本題中求證陰影部分的面積與△CDO的面積相等是解題的關鍵.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,在矩形ABCD中,AB=4cm,BC=8cm,點P從點A出發(fā)以1cm/s的速度向點B運動,點Q從點B出發(fā)以2cm/s的速度向點C運動,設經過的時間為xs,△PBQ的面積為ycm2,則下列圖象能反映y與x之間的函數(shù)關系的是(  )
          A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,在矩形ABCD中,點O在對角線AC上,以OA的長為半徑的⊙O與AD、AC分別交于點E、F,且∠ACB=∠DCE精英家教網(wǎng)
          (1)判斷直線CE與⊙O的位置關系,并說明理由;
          (2)若AB=
          2
          ,BC=2,求⊙O的半徑.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖①,在矩形 ABCD中,AB=30cm,BC=60cm.點P從點A出發(fā),沿A→B→C→D路線向點D勻速運動,到達點D后停止;點Q從點D出發(fā),沿 D→C→B→A路線向點A勻速運動,到達點A后停止.若點P、Q同時出發(fā),在運動過程中,Q點停留了1s,圖②是P、Q兩點在折線AB-BC-CD上相距的路程S(cm)與時間t(s)之間的函數(shù)關系圖象.
          (1)請解釋圖中點H的實際意義?
          (2)求P、Q兩點的運動速度;
          (3)將圖②補充完整;
          (4)當時間t為何值時,△PCQ為等腰三角形?請直接寫出t的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,在矩形ABCD中,對角線AC,BD相交于點O,∠AOB=60°,AB=6,則AD=( 。

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,在矩形ABCD中,AB=4,BC=6,E為線段BC上的動點(不與B、C重合).連接DE,作EF⊥DE,EF與AB交于點F,設CE=x,BF=y.
          (1)求y與x的函數(shù)關系式;
          (2)x為何值時,y的值最大,最大值是多少?
          (3)若設線段AB的長為m,上述其它條件不變,m為何值時,函數(shù)y的最大值等于3?

          查看答案和解析>>

          同步練習冊答案