日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在ABC中,AB=AC,∠ABC和∠ACB的平分線交于點O.

          (1) 結合圖形,請你寫出你認為正確的結論;

          (2) OEFBCABE,交ACF. 請你寫出圖中所有等腰三角形,并探究EF、BE、FC之間的關系;

          (3) AB≠AC,其他條件不變,圖中還有等腰三角形嗎?若有,請寫出所有的等腰三角形,若沒有,請說明理由;線段EF、BEFC之間,上面探究的結論是否還成立?

          【答案】1)結論:∠ABO=CBO=ACO=BCO(本題結論不唯一,正確即可),理由詳見解析;(2)等腰三角形有:△ABC、△AEF,△BEO,△COF,△BOCEF、BEFC之間的關系EF=BE+CF 理由詳見解析;(3)圖中的等腰三角形有:△BEO,△COF ;結論仍然成立,理由詳見解析.

          【解析】

          1))結論:∠ABO=CBO=ACO=BCO,根據(jù)等腰三角形的性質(zhì)及角平分線的定義即可證明(本題答案不唯一);(2)等腰三角形有:△ABC、△AEF,△BEO,△COF,△BOC;EFBE、FC之間的關系EF=BE+CF,由(1)可得,△ABC、△BOC是等腰三角形;由平行線的性質(zhì)及等腰三角形的性質(zhì)與判定即可證得△AEF是等腰三角形;由平行線的性質(zhì)及角平分線的定義即可證得△BEO,△COF是等腰三角形,EF=BE+CF;(2)圖中的等腰三角形有:△BEO,△COF ;結論仍然成立,類比(2)的方法證明即可.

          1)結論:∠ABO=CBO=ACO=BCO,理由如下:

          AB=AC,∴∠ABC=ACB

          OB平分∠ABC,OC平分∠ACB,

          ∴∠ABO=CBO=ACO=BCO

          2)等腰三角形有:△ABC、△AEF,△BEO,△COF,△BOC;EFBE、FC之間的關系EF=BE+CF, 理由如下:

          由(1)可得,△ABC、△BOC是等腰三角形;

          EFBC

          ∴∠ABC=AEF,∠AFE=ACB,

          ∵∠ABC=ACB

          ∴∠AEF=AFE,

          AE=AF,

          即△AEF是等腰三角形;

          BO平分∠ABC,

          ∴∠EBO=OBC;

          EFBC,

          ∴∠OBC=EOB

          ∴∠EBO=EOB;

          EO=BE,

          ∴△BEO是等腰三角形;

          同理可得OF=FC,

          ∴△COF是等腰三角形;

          EO+OF=BE+FC

          EF=BE+CF

          3)圖中的等腰三角形有:△BEO,△COF ;結論仍然成立,理由如下:

          BO平分∠ABC,

          ∴∠EBO=OBC;

          EFBC,

          ∴∠OBC=EOB

          ∴∠EBO=EOB;

          EO=BE,

          ∴△BEO是等腰三角形;

          同理可得OF=FC,

          ∴△COF是等腰三角形;

          EO+OF=BE+FC,

          EF=BE+CF

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】20筐橘子,以每筐20千克為標準,超過或不足的部分分別用正數(shù)或負數(shù)來表示,記錄如下:

          與標準重量的差(單位:千克)

          2

          1.5

          1

          0

          1

          1.5

          數(shù)

          1

          4

          2

          3

          2

          8

          (1)求最重的一筐比最輕的一筐重多少?

          (2)20筐橘子的總重量是多少千克?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知:在平面直角坐標系中,邊長為8的正方形OABC的兩邊在坐標軸上(如圖).

          1)求點A,B,C的坐標.

          2)經(jīng)過AC兩點的直線l上有一點P,點D0,6)在y軸正半軸上,連PD,PB(如圖1),若PB2PD224,求四邊形PBCD的面積.

          3)若點E0,1),點N2,0)(如圖2),經(jīng)過(2)問中的點P有一條平行于y軸的直線m,在直線m上是否存在一點M,使得MNE為直角三角形?若存在,求M點的坐標;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,某港口P位于南北延伸的海岸線上,東面是大海.“遠洋號、長峰號兩艘輪船同時離開港口P,各自沿固定方向航行,遠洋號每小時航行12n mile,長峰號每小時航行16n mile,它們離開港東口1小時后,分別到達A,B兩個位置,且AB=20n mile,已知遠洋號沿著北偏東60°方向航行,那么長峰號航行的方向是________.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在RtABC中,,角平分線交BCO,以OB為半徑作⊙O.(1)判定直線AC是否是⊙O的切線,并說明理由;

          (2)連接AO交⊙O于點E,其延長線交⊙O于點D,,求的值;

          (3)在(2)的條件下,設的半徑為3,求AC的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】為緩解揚州城區(qū)交通壓力,城市南部快速通道已于4.18開工建設.某工程隊承擔了某道路900米長的改造任務.工程隊在改造完360米道路后,引進了新設備,每天的工作效率比原來提高了20%,結果共用27天完成了任務,問引進新設備前工程隊每天改造道路多少米?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知數(shù)軸上兩點,其中A表示的數(shù)為-2,表示的數(shù)為2,若在數(shù)軸上存在一點,使得,則稱點叫做點、節(jié)點,例如圖1所示,若點表示的數(shù)為0,有,則稱點為點、“4節(jié)點”.

          請根據(jù)上述規(guī)定回答下列問題:

          1)若點為點、節(jié)點,且點在數(shù)軸上表示的數(shù)為-4,求的值.

          2)若點是數(shù)軸上點“5節(jié)點,請你直接寫出點表示的數(shù)為____________;

          3)若點在數(shù)軸上(不與、重合),滿足、之間的距離是、之間距離的一半,且此時點為點、節(jié)點,求的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】RtΔABC中,∠BAC=90°,點OABC所在平面內(nèi)一點,連接OA,延長OA到點E,使得AE=OA,連接OC,過點BBDOC平行,并使∠DBC=OCB,且BD=OC,連接DE.

          (1)如圖一,當點ORtΔABC內(nèi)部時.

          ①按題意補全圖形;

          ②猜想DEBC的數(shù)量關系,并證明.

          (2)AB=AC(如圖二),且∠OCB=30°,∠OBC=15°,求∠AED的大小.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】某校為美化校園,計劃對面積為1800m2的區(qū)域進行綠化,安排甲、乙兩個工程隊完成.已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化的面積的2倍,并且在獨立完成面積為400 m2區(qū)域的綠化時,甲隊比乙隊少用4.

          1)求甲、乙兩工程隊每天能完成綠化的面積分別是多少m2?

          2)若學校每天需付給甲隊的綠化費用是0.4萬元,乙隊為0.25萬元,要使這次的綠化總費用不超過8萬元,至少應安排甲隊工作多少天?

          查看答案和解析>>

          同步練習冊答案