日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在△ABC中,O為內(nèi)心,點(diǎn)E、F都在大邊BC上.已知BF=BA,CE=CA.求證:∠EOF=∠ABC+∠ACB.
          見試題解析.

          試題分析:由為內(nèi)心可連接,,構(gòu)造全等三角形。利用全等三角形的性質(zhì)及三角形的內(nèi)角和定理即可求解.
          試題解析:連結(jié),,,
          的內(nèi)心,

          ,,
          ,
          ,
          同理可證:,
          ,
          ===
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,點(diǎn)C在BD上,在線段BD的同側(cè)作等邊△ABC和等邊△CDE,AD、BE相交于點(diǎn)F.

          (1)求證:BE=AD;
          (2)求∠AFB的度數(shù);
          (3)設(shè)BE與AC交于點(diǎn)M,CE與AD交于點(diǎn)N,連接MN,試判斷△MCN的形狀,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,OC是∠AOB的角平分線,P是OC上一點(diǎn).PD⊥OA交OA于D,PE⊥OB交OB于E,F(xiàn)是OC上的另一點(diǎn),連接DF,EF.求證:DF=EF.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          在△ABC中,∠B=∠A+20O,∠C=∠B+20O,求△ABC的三個(gè)內(nèi)角的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

          小明、小強(qiáng)、小剛家在如圖所示的點(diǎn)A、B、C三個(gè)地方,它們的連線恰好構(gòu)成一個(gè)直角三角形,B,C之間的距離為5km,新華書店恰好位于斜邊BC的中點(diǎn)D,則新華書店D與小明家A的距離是(    )

          (A)2.5km       (B)3km          (C)4km            (D)5km

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

          圖1為兩個(gè)相同的矩形,若陰影區(qū)域的面積為10,則圖2的陰影面積等于( 。
          A.40B.30C.20D.10

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

          在△ABC中,∠A=80°,當(dāng)∠B=      時(shí), △ABC為等腰三角形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

          如圖,F(xiàn)D⊥AO于D,F(xiàn)E⊥BO于E,下列條件:①OF是∠AOB的平分線;②DF=EF;③DO=EO;④∠OFD=∠OFE.其中能夠證明△DOF≌△EOF的條件的個(gè)數(shù)有(    )
          A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

          以右圖方格紙中的3個(gè)格點(diǎn)為頂點(diǎn),有多少個(gè)不全等的三角形(   )
          A.6B.7C.8D.9

          查看答案和解析>>

          同步練習(xí)冊答案