日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在△ABC中,ABAC,∠BAC60°,DBC邊上一點(diǎn)(不與點(diǎn)B,C重合),將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到AE,連接EC,則:

          1ACE的度數(shù)是   ; 線段ACCD,CE之間的數(shù)量關(guān)系是   

          2)如圖,在△ABC中,ABAC,∠BAC90°,DBC邊上一點(diǎn)(不與點(diǎn)B,C重合),將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到AE,連接EC,請判斷線段AC,CD,CE之間的數(shù)量關(guān)系,并說明理由;

          3)如圖,ACDE交于點(diǎn)F,在(2)條件下,若AC8,求AF的最小值.

          【答案】160°,ACCE+CD;(2CE+CD,見詳解;(34

          【解析】

          1先判斷出∠BAD=∠CAE,即可判斷出△ABD≌△ACE,即可得出結(jié)論;

          得,△ABD≌△ACE,得出BDCE,即可得出結(jié)論;

          2)先判斷出BCAC,再同(1)的方法判斷出△ABD≌△ACE,即可得出結(jié)論;

          3)先判斷出點(diǎn)A,DC,E四點(diǎn)共圓,再由AF最小判斷出四邊形ADCE是矩形,即可得出結(jié)論.

          解:(1①∵△ABC是等邊三角形,

          ABAC,BBAC60°,

          由旋轉(zhuǎn)知,ADAE,DAE60°BAC

          ∴∠BADCAE,

          ∴△ABD≌△ACESAS),

          ∴∠ACEB60°,

          故答案為60°;

          由(1)知,ABD≌△ACE,

          BDCE,

          BCBD+CDCE+CD,

          ∵△ABC是等邊三角形,

          ACBC,

          ACCE+CD

          故答案為ACCE+CD;

          2)在ABC中,ABAC,BAC90°

          BC,

          由旋轉(zhuǎn)知,ADAE,DAE90°BAC

          ∴∠BADCAE,

          ∴△ABD≌△ACESAS),

          BDCE

          BCBD+CDCE+CD,

          CE+CD;

          3)由(2)知,ABD≌△ACE,

          ACEABD,

          ABC中,ABAC,BAC90°

          ∴∠ABDACB45°,

          ∴∠ACE45°,

          ∴∠BCEACB+∠ACE90°

          ∵∠DAE90°,

          ∴∠BCE+∠DAE180°

          點(diǎn)A,D,C,E在以DE為直徑的圓上,

          ACDE交于點(diǎn)F,

          AF是直徑DE上的一點(diǎn)到點(diǎn)A的距離,

          即:當(dāng)AFDE時(shí),AF最小,

          ∴∠CFD90°,

          ∴∠CDF90°ACB45°

          ∵∠ADE45°,

          ∴∠ADC90°,

          四邊形ADCE是矩形,

          AF最。AC4

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在ABC中,BA=BC,以AB為直徑的⊙O分別交AC,BC于點(diǎn)D,E,BC的延長線與⊙O的切線AF交于點(diǎn)F

          (1)求證:∠ABC=2CAF;

          (2)若AC=2CEEB=1:4,求CE,AF的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】2021年我省開始實(shí)施“ 3+1+2”高考新方案,其中語文、數(shù)學(xué)、外語三門為統(tǒng)考科目( 必考), 物理和歷史兩個(gè)科目中任選 1門,另外在思想政治、地理、化學(xué)、生物四門科目中任選 2門,共計(jì)6門科目,總分750 分, 假設(shè)小麗在選擇科目時(shí)不考慮主觀性.

          1)小麗選到物理的概率為 ;

          2)請用“畫樹狀圖”或“列表”的方法分析小麗在思想政治、 地理、 化學(xué)、生物四門科目中任選 2門選到化學(xué)、生物的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知, , 成正比例, 成反比例,并且當(dāng)時(shí), ,當(dāng)時(shí),

          )求關(guān)于的函數(shù)關(guān)系式.

          )當(dāng)時(shí),求的值.

          【答案】;(,

          【解析】分析:(1)首先根據(jù)x成正比例, x成反比例,且當(dāng)x=1時(shí),y=4;當(dāng)x=2時(shí),y=5,求出 x的關(guān)系式,進(jìn)而求出yx的關(guān)系式,(2)根據(jù)(1)問求出的yx之間的關(guān)系式,令y=0,即可求出x的值.

          本題解析:

          )設(shè), ,

          ∵當(dāng)時(shí), ,當(dāng)時(shí), ,

          解得, ,

          關(guān)于的函數(shù)關(guān)系式為

          )把代入得,

          解得: ,

          點(diǎn)睛:本題考查了用待定系數(shù)法求反比例函數(shù)的解析式:(1)設(shè)出含有待定系數(shù)的反比例函數(shù)解析式y(tǒng)=kx(k為常數(shù),k≠0);(2)把已知條件(自變量與對應(yīng)值)代入解析式,得到待定系數(shù)的方程;(3)解方程,求出待定系數(shù);(4)寫出解析式.

          型】解答
          結(jié)束】
          24

          【題目】如圖,菱形的對角線、相交于點(diǎn),過點(diǎn),連接、,連接于點(diǎn).

          (1)求證:;

          (2)若菱形的邊長為2, .求的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在二次函數(shù)yax2+bx+c(a≠0)的圖象中,小明同學(xué)觀察得出了下面幾條信息:①b24ac0;②abc0;③;④b24a(c1);⑤關(guān)于x的一元二次方程ax2+bx+c3無實(shí)數(shù)根,共中信息錯(cuò)誤的個(gè)數(shù)為( )

          A.4B.3C.2D.1

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】農(nóng)夫?qū)⑻O果樹種在正方形的果園內(nèi),為了保護(hù)蘋果樹不受風(fēng)吹,他在蘋果樹的周圍種上針葉樹.在下圖里,你可以看到農(nóng)夫所種植蘋果樹的列數(shù)(n)和蘋果樹數(shù)量及針葉樹數(shù)量的規(guī)律:當(dāng)n為某一個(gè)數(shù)值時(shí),蘋果樹數(shù)量會(huì)等于針葉樹數(shù)量,則n___________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】將矩形ABCD按如圖所示的方式折疊,BE,EG,FG為折痕,若頂點(diǎn)A,CD都落在點(diǎn)O處,且點(diǎn)B,OG在同一條直線上,同時(shí)點(diǎn)E,OF在另一條直線上,則的值為(

          A.B.C.D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,等腰上一點(diǎn),以為斜邊作等腰,連接,若,則的長為________________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】ABC中,若OBC邊的中點(diǎn),則必有:AB2+AC2=2AO2+2BO2成立.依據(jù)以上結(jié)論,解決如下問題:如圖,在矩形DEFG中,已知DE=4,EF=3,點(diǎn)P在以DE為直徑的半圓上運(yùn)動(dòng),則PF2+PG2的最小值為( 。

          A. B. C. 34 D. 10

          查看答案和解析>>

          同步練習(xí)冊答案