日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖1,已知二次函數(shù)yax2+bx+c(a≠0)的圖象與x軸交于A(1,0),B(30)兩點,與y軸交于點C(0,﹣2),頂點為D,對稱軸交x軸于點E

          (1)求該二次函數(shù)的解析式;

          (2)設(shè)M為該拋物線對稱軸左側(cè)上的一點,過點M作直線MNx軸,交該拋物線于另一點N.是否存在點M,使四邊形DMEN是菱形?若存在,請求出點M的坐標(biāo);若不存在,請說明理由;

          (3)連接CE(如圖2),設(shè)點P是位于對稱軸右側(cè)該拋物線上一點,過點PPQx軸,垂足為Q.連接PE,請求出當(dāng)△PQE與△COE相似時點P的坐標(biāo).

          【答案】(1)y=x2x2;(2)M坐標(biāo)為(1,﹣);(3)P的坐標(biāo)為(58)(2,﹣2)()(,)

          【解析】

          1)由A、B兩點的坐標(biāo),利用待定系數(shù)法可求得二次函數(shù)的表達(dá)式;
          2)先求出頂點D(1,﹣),則DE,根據(jù)四邊形DMEN是菱形,點M的縱坐標(biāo)為﹣,令x2x2=﹣,解方程,即可求出點M坐標(biāo).

          3)分COE∽△PQECOE∽△EQP兩種情況進(jìn)行討論.

          解:(1)設(shè)拋物線解析式為ya(x+1)(x3),

          將點C(0,﹣2)代入,得:﹣3a=﹣2,

          解得a,

          則拋物線解析式為

          (2)yx2x2(x1)2

          ∴頂點D(1,﹣),即DE,

          ∵四邊形DMEN是菱形,

          ∴點M的縱坐標(biāo)為﹣,

          x2x2=﹣,

          解得x

          M為該拋物線對稱軸左側(cè)上的一點,

          x1

          x1,

          ∴點M坐標(biāo)為(1,﹣);

          (3)C(0,﹣2),E(1,0),

          OC2,OE1

          如圖,設(shè)P(m, m2m2)(m1),

          PQ|m2m2|,EQm1,

          ①若COE∽△PQE,則

          解得m0()m5m2m=﹣3(),

          此時點P坐標(biāo)為(58)(2,﹣2);

          ②若COE∽△EQP,則

          解得m(負(fù)值舍去)m,

          此時點P的坐標(biāo)為()(,);

          綜上,點P的坐標(biāo)為(5,8)(2,﹣2)(,)(,)

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】為了弘揚我國古代數(shù)學(xué)發(fā)展的偉大成就,某校九年級進(jìn)行了一次數(shù)學(xué)知識競賽,并設(shè)立了以我國古代數(shù)學(xué)家名字命名的四個獎項:祖沖之獎、劉徽獎、趙爽獎楊輝獎,根據(jù)獲獎情況繪制成如圖1和圖2所示的條形統(tǒng)計圖和扇形統(tǒng)計圖,并得到了獲祖沖之獎的學(xué)生成績統(tǒng)計表:

          祖沖之獎的學(xué)生成績統(tǒng)計表:

          分?jǐn)?shù)

          80

          85

          90

          95

          人數(shù)

          4

          2

          10

          4

          根據(jù)圖表中的信息,解答下列問題:

          這次獲得劉徽獎的人數(shù)是多少,并將條形統(tǒng)計圖補(bǔ)充完整;

          獲得祖沖之獎的學(xué)生成績的中位數(shù)是多少分,眾數(shù)是多少分;

          在這次數(shù)學(xué)知識竟賽中有這樣一道題:一個不透明的盒子里有完全相同的三個小球,球上分別標(biāo)有數(shù)字“2”,隨機(jī)摸出一個小球,把小球上的數(shù)字記為x放回后再隨機(jī)摸出一個小球,把小球上的數(shù)字記為y,把x作為橫坐標(biāo),把y作為縱坐標(biāo),記作點用列表法或樹狀圖法求這個點在第二象限的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】拋物線y=﹣x2+bx+c經(jīng)過點A、B、C,已知A(﹣1,0),C(0,3).

          (1)求拋物線的解析式;

          (2)如圖1,P為線段BC上一點,過點Py軸平行線,交拋物線于點D,當(dāng)△BDC的面積最大時,求點P的坐標(biāo);

          (3)如圖2,拋物線頂點為E,EF⊥x軸于F點,M(m,0)是x軸上一動點,N是線段EF上一點,若∠MNC=90°,請指出實數(shù)m的變化范圍,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知點C為直徑BA的延長線上一點,CD切⊙O于點D,

          (Ⅰ)如圖①,若∠CDA=26°,求∠DAB的度數(shù);

          (Ⅱ)如圖②,過點B作⊙O的切線交CD的延長線于點E,若⊙O的半徑為3,BC=10,求BE的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在ABCD中,E是對角線BD上的一點,過點CCFDB,且CF=DE,連接AEBF,EF

          1)求證:△ADE≌△BCF

          2)若∠ABE+BFC=180°,則四邊形ABFE是什么特殊四邊形?說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】超速行駛是一種十分危險的違法駕駛行為,在一條東西走向的筆直高速公路MN上,小型車限速為每小時100千米. 現(xiàn)有一輛小汽車行駛到A處時,發(fā)現(xiàn)北偏東30°方向200米處有一超速監(jiān)測儀P. 10秒后,小汽車行駛至B處,測得監(jiān)測儀PB處的北偏西45°方向上. 請問:這輛車超速了嗎?通過計算說明理由.(參考數(shù)據(jù):

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,某高樓頂部有一信號發(fā)射塔,在矩形建筑物ABCDA、C兩點測得該塔頂端F的仰角分別為∠α=48°和∠β=65°,矩形建筑物寬度AD=20m,高度CD=30m,則信號發(fā)射塔頂端到地面的高度FG__米(結(jié)果精確到1m).

          參考數(shù)據(jù):sin48°=0.7cos48°=0.7,tan48°=1.1,cos65°=0.4tan65°=2.1

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知關(guān)于x的方程m x2-(m+2)x+2=0(m≠0).

          (1)求證:無論m為何值時,這個方程總有兩個實數(shù)根;

          (2)若方程的兩個實數(shù)根都是整數(shù),求正整數(shù)m的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】商場某種新商品每件進(jìn)價是120,在試銷期間發(fā)現(xiàn)當(dāng)每件商品售價為130元時,每天可銷售70,當(dāng)每件商品售價高于130元時,每漲價1,日銷售量就減少1.據(jù)此規(guī)律,請回答:

          (1)當(dāng)每件商品售價定為170元時,每天可銷售多少件商品?商場獲得的日盈利是多少?

          (2)在上述條件不變,商品銷售正常的情況下每件商品的銷售價定為多少元時,商場日盈利可達(dá)到1600?

          查看答案和解析>>

          同步練習(xí)冊答案