日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在ABC中,AB=BC,ACB=90°,點D、E在AB上,將ACD、BCE分別沿CD、CE翻折,點A、B分別落在點A′、B′的位置,再將A′CDB′CE分別沿A′C、B′C翻折,點D與點E恰好重合于點O,則A′OB′的度數(shù)是( )

          A.90° B.120° C.135° D.150°

          【答案】B

          【解析】

          試題分析:如圖所示,延長CO到F,由翻折的性質(zhì)可知:A′CF=,CA′O=DA′O=A=45°,OB′C=CB′E=ECB=45°,最后利用三角形外角的性質(zhì)可求得A′OB′的度數(shù).

          解:如圖所示:延長CO到F.

          AB=BC,ACB=90°,

          ∴∠A=B=45°

          由翻折的性質(zhì)可知:A′CF=,CA′O=DA′O=A=45°,OB′C=CB′E=ECB=45°

          ∴∠A′CB′=A′CF+B′CF==30°.

          ∴∠A′OB′=A′CB′+CA′O+OB′C=30°+45°+45°=120°

          故選:B.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,操場上有一根旗桿AH,為測量它的高度,在B和D處各立一根高1.5米的標(biāo)桿BC、DE,兩桿相距30米,測得視線AC與地面的交點為F,視線AE與地面的交點為G,并且H、B、F、D、G都在同一直線上,測得BF為3米,DG為5米,求旗桿AH的高度?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四邊形ABCD中,ADBC,ABC+DCB=90°,且BC=2AD,分別以AB、BC、DC為邊向外作正方形,它們的面積分別為S1、S2、S3.若S2=48,S3=9,則S1的值為( 。

          A. 18 B. 12 C. 9 D. 3

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,∠BAD=CBE=ACF,FDE=64°,DEF=43°,求△ABC各內(nèi)角的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】小明在學(xué)習(xí)過程中,對教材中的一個有趣問題做如下探究:

          (習(xí)題回顧)已知:如圖1,在△ABC中,∠ACB=90°,AE是角平分線,CD是高,AE、CD相交于點F.求證:∠CFE=CEF;

          (變式思考)如圖2,在△ABC中,∠ACB=90°,CDAB邊上的高,若△ABC的外角∠BAG的平分線交CD的延長線于點F,其反向延長線與BC邊的延長線交于點E,則∠CFE與∠CEF還相等嗎?說明理由;

          (探究廷伸)如圖3,在△ABC中,在AB上存在一點D,使得∠ACD=B,角平分線AECD于點F.ABC的外角∠BAG的平分線所在直線MNBC的延長線交于點M.試判斷∠M與∠CFE的數(shù)量關(guān)系,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】我們在學(xué)習(xí)“實數(shù)”時,畫了這樣一個圖,即“以數(shù)軸上的單位長為‘1’的線段作一個正方形,然后以原點O為圓心,正方形的對角線長為半徑畫弧交x軸于點A”,請根據(jù)圖形回答下列問題:

          (1)線段OA的長度是多少?(要求寫出求解過程)

          (2)這個圖形的目的是為了說明什么?

          (3)這種研究和解決問題的方式,體現(xiàn)了   的數(shù)學(xué)思想方法.(將下列符合的選項序號填在橫線上)

          A、數(shù)形結(jié)合;B、代入;C、換元;D、歸納.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,Rt△ABC中,∠B=30°,∠ACB=90°,CD⊥AB交AB于D,以CD為較短的直角邊向△CDB的同側(cè)作Rt△DEC,滿足∠E=30°,∠DCE=90°,再用同樣的方法作Rt△FGC,∠FCG=90°,繼續(xù)用同樣的方法作Rt△HIC,∠HCI=90°.若AC=a,求CI的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,某無人機于空中A處探測到目標(biāo)B,D,從無人機A上看目標(biāo)B,D的俯角分別為30°,60°,此時無人機的飛行高度AC為60m,隨后無人機從A處繼續(xù)飛行30 m到達A′處,
          (1)求A,B之間的距離;
          (2)求從無人機A′上看目標(biāo)D的俯角的正切值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,△ABC中,AD⊥BC,CE⊥AB,垂足分別為D、E,AD、CE交于點H,請你添加一個適當(dāng)?shù)臈l件: , 使△AEH≌△CEB.

          查看答案和解析>>

          同步練習(xí)冊答案