日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知直線y=kx+b(k≠0)與直線y=-2x平行,且經(jīng)過點(1,1),則直線y=kx+b(k≠0)可以看作由直線y=-2x向
          平移
          3
          3
          個單位長度而得到.
          分析:兩直線平行,則函數(shù)解析式的一次項系數(shù)相同,可確定k的值;把(1,1)代入即可求出b的值,然后根據(jù)平移的性質(zhì)即可求出答案.
          解答:解:∵一次函數(shù)y=kx+b的圖象經(jīng)過點(1,1),且與y=-2x的圖象平行,
          則y=kx+b中k=-2,
          當(dāng)x=1時,y=1,將其代入y=-2x+b,
          解得:b=3.
          則直線y=-2x+3可由直線y=-2x向上平移3個單位長度而得到.
          故答案為:上;3.
          點評:本題考查了一次函數(shù)圖象與幾何變換的知識,屬于基礎(chǔ)題,解題的關(guān)鍵是掌握兩直線平行則k值相同.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          12、已知直線y=kx+b經(jīng)過第一、二、四象限,則直線y=bx+k經(jīng)過(  )

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•義烏市)如圖1,已知直線y=kx與拋物線y=-
          4
          27
          x2
          +
          22
          3
          交于點A(3,6).
          (1)求直線y=kx的解析式和線段OA的長度;
          (2)點P為拋物線第一象限內(nèi)的動點,過點P作直線PM,交x軸于點M(點M、O不重合),交直線OA于點Q,再過點Q作直線PM的垂線,交y軸于點N.試探究:線段QM與線段QN的長度之比是否為定值?如果是,求出這個定值;如果不是,說明理由;
          (3)如圖2,若點B為拋物線上對稱軸右側(cè)的點,點E在線段OA上(與點O、A不重合),點D(m,0)是x軸正半軸上的動點,且滿足∠BAE=∠BED=∠AOD.繼續(xù)探究:m在什么范圍時,符合條件的E點的個數(shù)分別是1個、2個?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知直線y=kx+1經(jīng)過點A(2,5),求不等式kx+1>0的解集.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知直線y=kx+2-4k(k為實數(shù)),不論k為何值,直線都經(jīng)過定點
          (4,2)
          (4,2)

          查看答案和解析>>

          同步練習(xí)冊答案